Дома серии п-55м

Кинематическая схема радиально-сверлильного станка 2А53

Кинематическая схема радиально-сверлильного станка 2А53

Описание кинематической схемы станка

Кинематическая схема станка (рис. 9) состоит из четырех кинематических цепей:

  1. Цепь вращения шпинделя;
  2. Цепь подачи (вертикального перемещения пиноли со шпинделем в сверлильной головке);
  3. Цепь вертикального перемещения рукава по цепи по колонне
  4. Цепь горизонтального перемещения сверлильной головки по рукаву.

Шпиндель получает вращение от двухскоростного электродвигателя 42, который через пару зубчатых колес 1 и 2 сообщает вращение валу II коробки скоростей (см. рис. 18).

На валу II расположены две фрикционные муфты 43 и 44. При включении верхней муфты 43 вращение на вал IV передается шестернями 3 и 4, при включении нижней муфты 44 — шестернями 5, б и 7.

Наличие вала III с паразитной шестерней 6 обеспечивает изменение направления вращения шпинделя при переключении муфт. Числа зубьев указанных шестерен подобраны таким образом, чтобы число оборотов шпинделя при включении верхней муфты было в 1,41 раза выше, чем при выключении нижней муфты.

Это разрешает использовать муфты не только для реверсирования шпинделя, но и для изменения его скорости вращения. Сохранение же постоянным направления вращения шпинделя в этом случае достигается за счет автоматического реверсирования электродвигателя 42.

По гильзе шпинделя VI перемещается двойной зубчатый блок, имеющий три положения. В верхнем положении блок передает вращение шпинделю через шестерни 4 и 13; в среднем — через шестерни 10 и 12; в нижнем — шестерня 12 находится в зацеплении с шестерней 11. В этом случае шпиндель получает вращение от вала IV через вал Vпосредством зубчатых колес 8, 9, 11 и 12.

Сохранение направления вращения шпинделя при включении вала перебора V также обеспечивается за счет автоматического реверсирования приводного электродвигателя.

Следовательно, шпиндель имеет 12 различных скоростей вращения в диапазоне от 50 до 2240 об/мин., получаемых с помощью изменения числа оборотов электродвигателя, переключения фрикционной муфты и двойного зубчатого блока, играющего роль тройного блока.

Переключением фрикционной муфты без соответствующего реверсирования электродвигателя можно получить те же 12 скоростей вращения шпинделя, но только в обратном направлении.

Коробка подач (см. рис. 23) получает вращение от шпинделя через постоянный редуктор с шестернями: 14 и 15, 16 и 17, 18 и 19.

Последняя шестерня 19 закреплена на валу IX, по которому перемещается двойной зубчатый блок, Этот блок передает валу X две скорости вращения через шестерни 20 и 21 или 22 и 23.

Четырехвенцовый зубчатый блок, перемещающийся по валу XI, сообщает этому валу 8 скоростей через зубчатые колеса: 23 и 24, 25 и 26, 27 и 28 или 29 и 30. При включении зубчатой муфты 45 вращение от коробки подач передается валу XII механизма подачи (см. рис. 24). Червяк 31, сидящий на этом валу. через червячное колесо 32, сообщает вращение валу XIII, шестерня 33 которого находится в зацеплении с зубчатой рейкой 48, нарезанной на пиноли шпинделя.

Таким образом, пиноль с расположенным в ней шпинделем получает 8 величин механической подачи на один оборот шпинделя.

При выключенной муфте 45 можно с помощью маховика 46 производить подачу шпинделя вручную.

Быстрое перемещение шпинделя выполняется при помощи рукояток 47.

Механизм вертикального перемещения рукава (см. рис. 14) приводится во вращение отдельным электродвигателем 49. Вращательное движение через шестерни 36 и 37, 38 и 39 сообщается винту 40, который, вращаясь в гайке 41, укрепленной в рукаве, обеспечивает подъем или опускание последнего. Изменение направления перемещения рукава производится реверсированием электродвигателя 49 при помощи кнопочной станции.

Ручное перемещение сверлильной головки по направляющим рукава выполняется вращением маховичка 52 (см. рис. 25), который укреплен на валике XIV. расположенном внутри вала XIII. Шестерня 34, сидящая на валике XIV, находится в зацеплении с шестерней 35, которая соединена с зубчатой рейкой 51, укрепленной на рукаве. При вращении маховичка 52 шестерня 35 перемещается по рейке, передвигая сверлильную головку.

Создатель авиации завтрашнего дня

Во многом облик ЭМЗ определился самой личностью его создателя – генерального конструктора Владимира Михайловича Мясищева. Он был выдающимся новатором, всегда смотревшим в будущее авиации. При этом его имя стоит в тени других прославленных авиастроителей, отчасти в силу природной скромности, отчасти – из-за порой зашкаливающей новизны его работ. Многие из крылатых машин Мясищева остались в виде экспериментальных моделей: промышленность тех лет была не готова к столь высокому полету мысли авиаконструктора.

Экспериментальный машиностроительный завод, образованный в 1966 году, стал логичным продолжением предыдущих ОКБ Мясищева, первое из которых он возглавил в 1942 году. До создания завода Владимир Михайлович успел поработать под началом легендарных В.М. Петлякова и А.Н. Туполева, побывать в «туполевской шараге» и в кресле руководителя ЦАГИ, создать ряд прогрессивных самолетов: дальний скоростной высотный бомбардировщик ДВБ-102, модификацию пикирующего бомбардировщика Пе-2, стратегические бомбардировщики М-4 и 3М, сверхзвуковой стратегический самолет М-50. 

М-4 стал первым в мире серийным реактивным межконтинентальным самолетом – носителем ядерного оружия. «Стратеги» Мясищева, способные доставлять атомный заряд до цели, обеспечили паритет нашей страны во времена холодной войны. Эти машины служили Родине вплоть до середины 1990-х годов, в преклонном возрасте работая «воздушными бензоколонками». Прорывные идеи, которые Владимир Михайлович вложил в них, до сих пор применяются в стратегической авиации.

Эксплуатация

Длительность полета на потолке составляет 134 минуты, а на высоте 17000 м – 6,5 часов, что является более чем впечатляющими показателями. В связи с этим нет ничего удивительного в том, что «Геофизик» используется и на сегодняшний день. Безусловно, это происходит не на постоянной основе, однако он участвует в некоторых испытаниях, а также он является постоянным участников выставок и других международных конкурсов.

Читайте Атомный миномет 2б1 Ока 420 мм

Хотелось бы отметить, что самолет высотного назначения М-55 в состоянии осуществлять исследования в области стратосферы, а точнее на высотах до 20 км. Кроме того, именно для него не представляет особенного труда мониторинг в области воздушной среды, суши, а также водных бассейнов. Помимо этого, описываемый самолет может выступать в роли ретранслятора для последующего обеспечения радио- и телефонной связи. Примечательно и то, что на базе указанной модификации была спроектирована целая система противоградовой протекции.

Учитывая все это, необходимо отметить, что именно М-55 является одной из самых надежных и часто эксплуатируемых модификаций. Она разрабатывалась на протяжении многих лет и, в том числе во многом благодаря этому, позднее на базе самолета разрабатывались другие, не менее перспективные, устройства. Таким образом, можно по праву считать «Геофизика» легендой.

Задача импортозамещения решена

М55Р — важнейший элемент в составе главной энергетической установки кораблей проекта 22350. На каждом фрегате монтируется два агрегата — по одному на каждый борт. Электропитание обеспечивает дизель-генератор АДГ-1000НК разработки ООО «Уральский дизель-моторный завод» (Екатеринбург). Все материалы и комплектующие, использованные в М55Р, исключительно российского производства.

Создание ДГТА велось в кооперации с ведущими российскими предприятиями. В проектировке изделия рыбинским инженерам помогали специалисты Северного проектно-конструкторского бюро (Санкт-Петербург).

Редуктор М55Р был изготовлен на ПАО «Звезда» (Санкт-Петербург), дизельная установка — в АО «Коломенский завод» (Подмосковье), локальные системы управления — в АО «Концерн «НПО «Аврора» (Санкт-Петербург).

В 2023 году М55Р получит цифрового двойника. По информации ОДК, это позволит управлять жизненным циклом силовой установки, повысит надёжность и коммерческую привлекательность российских морских двигателей.

«Цифровизация сокращает сроки и стоимость проектирования силовых установок, в том числе линейки морских газотурбинных двигателей нового поколения, помогает достичь расчётных характеристик, минимизирует затраты на изготовление опытных образцов, а также испытания и доводку двигателей», — цитирует пресс-служба ОДК генерального конструктора корпорации Юрия Шмотина.

Мощность М55Р составляет 27,5 тыс. л. с. при КПД 36,8%. Как отмечают в ОДК, по своим характеристикам ДГТА не уступает зарубежным аналогам. Как сообщил в декабре 2020 года генеральный конструктор «ОДК-Сатурн» Роман Храмин, ДГТА является одним из самых передовых и надёжных агрегатов.

«Самое важное, что освоено серийное производство составных частей газотурбинного агрегата. Освоены дизель, редуктор, двигатель и все компоненты этой системы, в том числе электронная, топливная аппаратура», — цитирует Храмина пресс-служба Торгово-промышленной палаты Ярославской области. 

  • Испытания дизель-газотурбинного агрегата М55Р 
  • АО «Объединённая двигателестроительная корпорация»

По словам Мураховского, М55Р отличается от украинского образца увеличенным эксплуатационным ресурсом, более эффективной топливной системой и повышенным коэффициентом полезного действия.

«После разрыва Киевом военно-технических отношений с Россией нам пришлось в сжатые сроки создать испытательный стенд и подготовить производственную площадку. В итоге российский двигатель получился более совершенным. Он в лучшую сторону отличается по материалам, КПД, техническим и эксплуатационным характеристикам», — пояснил Мураховский.

Как отмечал в 2017 году президент РФ Владимир Путин на встрече с представителями деловых кругов Ярославской области, на момент прекращения поставок украинских газотурбинных агрегатов Россия не имела научно-производственного фундамента для удовлетворения потребностей флота в двигателестроительных изделиях.

Тем не менее, с точки зрения главы государства, задача импортозамещения данной продукции была решена быстро, уверенно и с высоким качеством.

«Мы создали фактически новую научную школу и новую отрасль по морскому двигателестроению, чего в России раньше никогда не было, мы всё покупали на Украине. Но не было бы счастья, да несчастье помогло», — заявил Путин.

Дмитрий Корнев констатирует, что разрыв военно-технического сотрудничества, на который пошёл официальный Киев, на несколько лет затормозил кораблестроительные программы РФ. «Не будем лукавить: сроки сдачи кораблей ВМФ тогда поползли вправо, и это относилось не только к фрегатам 22350», — сказал Корнев.

Однако, как считает эксперт, «время расставило всё по своим местам» и теперь ключевое значение для промышленности и ВМФ имеет то обстоятельство, что М55Р является исключительно российской разработкой, обеспечивающей полную технологическую независимость от Украины и Запада, где выпускаются морские агрегаты такого же класса. 

2 Станок 2М55 – характеристики и составные части

Агрегат состоит из следующих компонентов:

  • рукав;
  • установка охлаждения;
  • плита;
  • вал червяка;
  • коробка скоростей;
  • сверлильная головка;
  • гидростанция;
  • устройство зажима головки;
  • редуктор;
  • устройство подъема;
  • токосъемник;
  • колонна;
  • гидравлический зажим;
  • зажим рукава;
  • колонна;
  • гидропанель, гидрокоммуникация, гидропреселектор и его привод;
  • электрическое оборудование (отдельное для головки, рукава и колонны);
  • шпиндель;
  • коробка подач;
  • фрикционная муфта;
  • главный цилиндр;
  • устройство перемещения головки в ручном режиме;
  • противовес;
  • командный аппарат;
  • насосный механизм;
  • устройство включения подач.

Фундаментная плита выполняет функцию основания агрегата. Цоколь монтируется на ней (неподвижно). А вращающаяся металлическая колонна устанавливается на подшипниках в цоколе. Специальное устройство подъема рукава передвигает его и сверлильную головку по колонне. Указанное устройство при помощи ходового винта соединяется с рукавом.

Головка для сверления представляет собой самостоятельный силовой механизм, состоящий из шпинделя с противовесом, коробки и специальных устройств подачи, а также коробки скоростей. Передвигать по рукаву ее необходимо вручную. При достижении же требуемого места над деталью головка фиксируется посредством надежного зажимного приспособления. Подобная схема отличает рассматриваемый агрегат от многих других видов сверлильного оборудования, например от станка 2А135.

Ключевые параметры (технические) станка:

  • максимальный диаметр (условный) сверления при обработке чугунных деталей – 50 мм;
  • интервал резьбы, нарезаемой в стальных изделиях – 63 мм;
  • класс точности – Н;
  • угол поворота вокруг колонны рукава со сверлильной головкой – 360°;
  • максимальное передвижение (в вертикальном направлении) рукава – 750 мм;
  • расстояние от плиты до шпинделя – 450 мм (минимальное), 1600 мм (максимальное);
  • величина вылета шпинделя – 375 мм (наименьшая), 1600 мм (наибольшая);
  • длина плиты – 2555 мм, ширина – 1000 мм;
  • максимальное передвижение (по горизонтали) головки для сверления по рукаву – 1225 мм;
  • предельный ход шпинделя – 400 мм;
  • вес станка – 4700 кг.

Первые проекты завода

Постановление Совета министров СССР о создании в подмосковном городе Жуковском Экспериментального машиностроительного завода (ЭМЗ) вышло 14 июня 1966 года. Базой для предприятия стали филиал завода имени М.В. Хруничева и КБ-90 Министерства общего машиностроения. В структуру возглавляемого В.М. Мясищевым завода вошли конструкторское бюро, опытное производство и летно-испытательный комплекс. 


Ил-22

Работа ЭМЗ началась с создания летающих лабораторий на базе уже существующих самолетов. Затем был разработан воздушный пункт управления Ил-22 на основе гражданского авиалайнера Ил-18, впервые взлетевший в 1972 году. Его новейшие модификации успешно эксплуатируются ВКС РФ. 

После этого ЭМЗ переключился на проектирование легкого военно-транспортного самолета. Работа велась параллельно с КБ О.К. Антонова и КБ Г.М. Бериева по двум вариантам машин: вертикального взлета и посадки и короткого взлета и посадки. «Эмзовцы» доказали реальность обоих вариантов, однако приоритет был отдан киевлянам, в результате чего на свет появился уникальный транспортник Ан-72. Немало других проектов ЭМЗ постигла похожая участь – они оставались только на бумаге.

Авторы Гайдпарка

  • Екатерина Иванова

    Пуск ракеты комплекса «Ответ» фрегатом «Маршал Шапошников»

    Читать полностью

  • Екатерина Иванова

    Фрегат «Адмирал Горшков» совершил очередной пуск ракеты «Циркон»

    Читать полностью

  • Анатолий Шунавикин

    Как либерал с Эха А.Орех похож на Президента В.Путина…

    Читать полностью

  • Алексей Хохлов

    Китайская ракета Kuaizhou-1A не смогла вывести на орбиту два демонстрационных спутника

    Читать полностью

  • Валентин Козлов

    Микроскоп

    Читать полностью

  • Александр Попов

    Арабские Эмираты отказались от покупки американских истребителей F-35

    Читать полностью

  • Бедный Виктор

    Семья и вроде даже нормальная

    Читать полностью

  • Продавец Воздуха

    За год или два перед смертью

    Читать полностью

  • Мухоморов

    А нашему народу какая польза от трубы «Северный поток-2»?

    Читать полностью

  • Петр Новыш

    Уникальный талант Гагик Сарибекович Олкинян

    Читать полностью

  • Василий Иванов

    Была ли дружба народов в СССР?

    Читать полностью

  • Voxpop

    Как не попасть в «чужую колею»

    Читать полностью

Особенности конструкции узлов станка

Рабочий стол

Опорная плита изготовлена в виде отливки из модифицированного чугуна. Для усиления в конструкции предусмотрены продольные и поперечные ребра. Специальные Т-образные пазы позволяют использовать разные способы фиксации обрабатываемых деталей. Можно устанавливать:

  1. Трехкулачковый патроны, в них закрепляют цилиндрические детали. Тогда осевые сверления будут выполнены с высокой точностью.
  2. Четырехкулачковые патроны предназначены для фиксации несимметричных деталей на столе.
  3. Пневматические или эксцентриковые фиксаторы используют для позиционированного закрепления специальной формы.

Опорная колонна

Для фиксации колонны используется конусное кольцо. При осевом перемещении конус зажимает цилиндр, не позволяя ему проворачиваться во втулке. Непроизвольный поворот колонны невозможен. Она жестко фиксируется.

Для облегчения перемещений конусного кольца использованы специальные фланцы. Для их смещения применяют винтовые зажимы, соединенные рукоятками управления и соответствующими механизмами продольного перемещения.

Перки для экипажа

Командир

  1. Боевое братство
  2. Шестое чувство
  3. Маскировка

Наводчик

  1. Боевое братство
  2. Маскировка
  3. Плавный поворот башни

Наводчик

  1. Боевое братство
  2. Маскировка
  3. Снайпер

Механик-водитель

  1. Боевое братство
  2. Маскировка
  3. Виртуоз

Заряжающий

  1. Боевое братство
  2. Маскировка
  3. Опционально

Заряжающий

  1. Боевое братство
  2. Маскировка
  3. Опционально

По умениям у нас всё стандартно. Основными перками остаются всё те же маскировка, «лампочка» и ББ. Единственная проблема, опять же, со вторым наводчиком. Так как он, в лучшем случае, будет просто со 100% основного умения, то это значит, что мы не сможем получить бонус от Боевого Братства (условие требует, чтобы оно было выучено для всех членов экипажа). Но если вы решили оставить эту арту у себя в гараже надолго, то эта проблема решится с течением времени.

Конструкция

Описываемая модель самолета обладает двухбалочной конструкцией с высоко располагающимся крылом значительного удлинения. Он набран из высоконесущих профилей сверхкритического типа, что и на сегодняшний день вызывает интерес у инженеров. В фюзеляже, а именно в передней его части, располагается кабина пилота и специальный отсек, который оборудован разведывательной аппаратурой

Специалисты обращают внимание на то, что ее общая масса составляет не меньше 1,5 тонн

Задняя часть фезюляжа представляет собой отсек моторного типа. Именно там располагаются два высокоэкономичных двигателя двухконтурного типа с индексом Д-30В12 (на М-17 стоял один двигатель РД-36-51В). Показатели емкости, связанные с топливной системой, составляют 8300 литров.

Электрооборудование

На станке 2М55 электрическая схема отображает управление рабочими органами. Электрическая принципиальная схема представлена на рисунке.

Электрическая схема станка 2М55

  • Безопасность работы на станке обеспечивают блокировки.
  • Если командоаппарат находится во включенном состоянии, то питание на двигатель подаваться не будет до тех пор, пока рукоятку управления не установят в нейтральное положение.
  • Переключение скоростей невозможно во время работы гидропреселектора. Сигнал не подается на катушку золотника.
  • Ограничение перемещений рукава по колонне осуществляется двумя конечными выключателями.

Подавая питание в электрическую цепь, включаются главный двигатель и двигатель гидростанции, и станок переходит в режим наладки.

Зажим и отжим сверлильного узла и колонны гидравлический. Электросхема управляет катушками гидрозолотника. Организована возможность отдельного отжима сверлильного узла.

Поворачивать рукав и перемещать сверлильную головку можно только в ручную, нажав на кнопку отжима. Движение рукава по колонне осуществляется от отдельного двигателя М2.

Схема обеспечивает преселективный преднабор скоростей вращения шпинделя и рабочих подач. Данные операции производятся во время работы станка. По окончании обработки сигнал с реле подается на двигатель М5. Он перемещает механизм переключения до согласования положений переключателя В11 с переключателем В13. После этого происходит переключений на заданные режимы.

На шпинделе организовано реверсивное вращение.

Контроль нагрузки на двигатель шпинделя осуществляется амперметром ИП1.

Назначение

Как видно из названия, данная модель производит операции, связанные с обработкой отверстий. Используя различный инструмент, отверстия обрабатываются при помощи: сверления и рассверливания, зенкерования и цекования, а затем развертывания. Также на станке обрабатываются подрезанием торцы и нарезается резьба в теле детали.

Радиально-сверлильные станки 2М55, оснащение которых можно расширить специализированными приспособлениями, производят операции по выточке канавок внутри отверстий, вырезание на металлическом листе отверстий, а также могут проводить высокоскоростную обработку.

Главным достоинством радиально-сверлильных станков является отсутствие перемещения заготовки во время обработки. Тяжелые или с большими габаритами детали устанавливаются один раз, а обработка ведется путем перемещения инструмента над поверхностью детали. Такой метод снижает потерю времени на переустановку и избавляет от неудобств по кантованию.

Сферы применения и технические особенности станка

Станок 2М55, конструкция которого разработана в известном Одесском конструкторском бюро «АРС», служит для выполнения таких технологических операций, как:

  • сверление и рассверливание отверстий;
  • зенкерование;
  • развертывание;
  • растачивание предварительно выполненных отверстий;
  • нарезание внутренней резьбы;
  • подрезка торцов деталей и др.

Благодаря универсальности радиально-сверлильного станка модели 2М55 его успешно используют на предприятиях, выпускающих продукцию единичными, мелкими и средними сериями, и в сборочных цехах предприятий, работающих в сфере тяжелого транспортного машиностроения. Технические возможности станка позволяют оснащать его дополнительными приспособлениями и инструментами, благодаря которым это устройство можно использовать в крупносерийном производстве.

Массивное основание станка 2М55 позволяет разместить два стола и работать с крупногабаритными деталями

Важное преимущество использования рассматриваемого аппарата состоит в том, что обрабатываемая деталь остается неподвижной, а все перемещения совершает шпиндельный узел с закрепленным в нем режущим инструментом. Такая конструктивная особенность модели 2М55 позволяет экономить время, а также исключает необходимость перемещать габаритные и тяжелые детали по рабочему столу оборудования. Установочные размеры станка

Установочные размеры станка

К преимуществам радиально-сверлильного станка модели 2М55 относят следующие особенности.

  • В верхней части агрегата отсутствуют механизмы, нуждающиеся в обслуживании, что значительно облегчает процесс использования аппарата.
  • Зажим колонны из-за использования конусного механизма отличается высокой жесткостью, что делает возможной обработку на высоких скоростях. Благодаря такой характеристике увеличивается ход траверсы по колонне и головки для сверления по траверсе, в результате возрастает объем рабочего пространства.
  • Благодаря двухстоечной компоновке радиально-сверлильного станка 2М55 и оснащению траверсы оборудования жесткими направляющими обеспечивается высокая точность обработки заготовок.
  • Высокая скорость передвижения рукава по колонне и быстродействие его зажима значительно сокращают время выполнения вспомогательных операций.
  • Конструкция направляющих станка, при разработке которой были использованы инновационные подходы, увеличивает его ремонтопригодность и сокращает время на техническое обслуживание. Особое значение имеют следующие характеристики радиально-сверлильного станка модели 2М55.
  • Противовес, которым оснащен шпиндельный узел, дает возможность оперативно регулировать данный узел в зависимости от веса используемого инструмента.
  • Колонна станка из-за специальной конструкции поворачивается очень легко, в результате оператор затрачивает минимум усилий при выполнении такой операции.
  • Направляющие станка не нуждаются в частом шабрении, для восстановления их характеристик достаточно плановых мероприятий.
  • Технические возможности радиально-сверлильного станка 2М55 предусматривают автоматическое отключение вращающегося инструмента тогда, когда он достиг требуемой глубины сверления.
  • Зажим колонны благодаря своей особой конструкции создает значительный тормозной момент, что повышает производительность устройства.
  • В конструкции радиально-сверлильного станка 2М55 имеется электрогидравлический преселективный механизм, управляемый дистанционно и позволяющий предварительно устанавливать необходимые характеристики сверления, а также оперативно изменять их в ходе обработки.
  • Высокая жесткость станка 2М55 способствует тому, что ось шпинделя остается в исходном положении в процессе работы.

Органы управления станка (нажмите для увеличения)

Технические характеристики

  • Диаметр сверления в стали 45 по ГОСТ 1050-38 , мм 32
  • Диаметр сверления в чугуне СЧ по ГОСТ 1412-89, мм 40
  • Расстояние от оси шпинделя до направляющей колонны (вылет), мм 1000
  • Масса 2Л53У инструмента, кг, max 5
  • Перемещение шпинделя, мм max 325
  • Перемещение сверлильной головки по рукаву, мм, max 710
  • Max вертикальное перемещение рукава по колонне, мм 6251
  • Угол max поворота рукава вокруг оси колонны, град. 330
  • Пределы частоты вращения шпинделя, мин-1 35,5 — 1400
  • Число ступеней вращения шпинделя 8
  • Число ступеней рабочих подач 6
  • Габаритные размеры, мм ДхШхВ, мм 2500x1070x2840
  • Вес, кг 3500

Облегченный радиально-сверлильный станок 2Л53У используется при единичном, мелкосерийном и серийном производстве. Оборудование активно применяют на небольших заготовительных предприятиях, цехах и заводах. Механизм способен выполнять такие технологические операции, как:

  • зенкование;
  • сверление;
  • рассверливание;
  • нарезание резьбы;
  • развертывания;
  • подрезка плоскостей резцом.

Перед тем, как приобретать станок 2Л53У, стоит подготовить бетонную основу под установку оборудования. Высота слоя должна быть не менее 40 см.

Основные части и узлы станка:

  • чугунный рабочий стол, обладающий поворотной конструкцией, который может проворачиваться вокруг оси на +90 и -80 градусов вручную;
  • система подачи охлаждающей жидкости (СОЖ);
  • устройство переключения подач;
  • сверлильная головка, в корпусе которой, имеется коробка скоростей и коробка подач, устройство для переключения подачи и органы управления;
  • электрооборудование, проводка и электрошкаф;
  • бочка на которой крепится поворотный стол, осуществляющий движение по вертикали и вокруг колонны на 360 градусов;
  • элементы управления;
  • механизм перемещения и зажима сверлильной головки.
  • рукав, на котором находится механизм сверлильной головки;
  • фундаментная плита, на которой расположена вертикальная чугунная колонна.

Чтобы предотвратить обрыв электропроводов, поворот рукава относительно колонны притеснен жесткими упорами. Передвижение бочки по колонне возможно за счет надежного соединения винта с кронштейном. Для предотвращения перегрева рабочего инструмента и быстрого износа оснастки, в конструкцию 2Л53У вмонтирована СОЖ, которая подает жидкость с помощью насоса охлаждения.

Чтобы переключить скорость и подачу, оператору необходимо воздействовать на рукоятку, которая находится справа на сверлильной головке. Предохранительная муфта расположена таким образом, что специалист может без демонтажа узлов произвести нужную регулировку.

Промышленное станочное устройство 2Л53У оборудовано тремя электродвигателями, а именно:

  • для подачи охладительной жидкости в рабочую зону – 0,125 кВт;
  • привод стола – 0,56 кВт;
  • привод шпинделя – 2,2 кВт.

Станок 2Л53У надежно защищен от перегрузок и коротких замыканий с помощью предохранителя и теплового реле. Самовольное передвижение стола не допускается блокированной рукояткой отжима и конечным выключателем. Помимо этого, имеется специальное устройство торможения, которое управляется электромагнитом. Чтобы сработал пружинный тормоз, следует установить рукоятку в нейтральное положение, что приводит к автоматическому отключению электромагнита. Срабатывание тормозной системы в автоматическом режиме также происходит при умышленных или случайных отключениях электросети.

Радиально-сверлильный станок 2Л53У позволяет оператору выполнять обработку разного уровня сложности. Это возможно за счет широкого диапазона чисел оборотов и подач шпинделя. Большим преимуществом является то, что специалист, работая за станком, прилагает минимум физических усилий при меньших радиусах сверления, что позволяет увеличить эффективность рабочего процесса. Все виды технологических операций выполняются строго с международными стандартами качества.

Для усовершенствования механизма, в конструкцию монтируется:

  • защитный экран для области сверления и резания;
  • система воздушного охлаждения рабочей оснастки;
  • поворотная или стандартная тумба.

Данная модель станка считается незаменимой, если на предприятии постоянно требуется обрабатывать металлические детали. Оборудование довольно простое в использовании и вполне может выступать самостоятельной производственной единицей.

Выполнение работы по сверлению на станке

Вращение от электродвигателя передается на:

  • упругую муфту, сглаживающую вибрацию;
  • фрикцион, позволяющий включать передачу в «мягком» режиме;
  • коробку скоростей, имеющую передвижные блоки шестерен (4 шт.).

Наличие в коробке скоростей накидной шестерни позволяется организовывать обратное вращение шпинделя. Ее включение происходит после остановки фрикционов. На каждые две скорости прямого вращения имеется одна скорость обратного.

В двойных блоках зубчатых колес имеется возможность перемещения ползуна так, что в третьем промежуточном положении зацепления нет. Тогда оператор может производить вращение от руки, не прилагая больших усилий (зацепления нет, не нужно вращать блоки шестерен).

Для вертикального перемещения шпинделя вверх и вниз используется муфта включения подачи. Здесь применяется червячная передача: червячное колесо и червяк. Они осуществляют движение пиноли шпинделя в прямом и обратном направлениях (изменяется путем включения реверсированного включения двигателя).

Возможны грубая и точная подача инструмента с использованием рукояток и маховиков управления на сверлильной колонне станка. При выполнении производственного процесса можно сверлить детали в ручном режиме, вращая маховик. При выборе необходимой подачи на пульте управления (необходимое перемещение шпинделя в мм/об сверла) работа выполняется автоматически. Нужно задать требуемую глубину сверления.

При реверсированном переключении двигателя подачи шпинделя используется кулачковая предохранительная муфта. В случае увеличения предельного усилия перемещения происходит ее отключение. Такое техническое решение позволяет не перегружать инструмент (предотвращает его поломку) при сверлении отверстий.

Тактико-технические характеристики М-55 Геофизика

– Разработчик: ОКБ Мясищева
– Главный конструктор: В. К. Новиков
– Первый полёт: 16 августа 1988 года
– Единиц произведено: 5

Экипаж М-55 Геофизика

– 1 пилот

Размеры М-55 Геофизика

– Длина: 22,67 м
– Размах крыла: 37,46 м
– Высота: 4,83 м
– Площадь крыла: 131,6 м²
– Профиль крыла: П-173-9
– База шасси: 5,735 м
– Колея шасси: 6,6 м

Вес М-55 Геофизика

– Масса пустого: 14 000 кг
– Нормальная взлётная масса: 23 400 кг
– Масса топлива во внутренних баках: 7900 кг
– Масса полезной нагрузки: 1500 кг

Двигатель М-55 Геофизика

– Силовая установка: 2 × ТРДД Д-30-10В
– Тяга: 2 × 88,26 кН (9 000 кгс) (номинальная)
– Тяга взлётная: 2 × 186,3 кН (19000 кгс)
– Тяга на высоте 21000 м: 2 × 6,57 кН (670 кгс)

Скорость М-55 Геофизика

– Максимальная скорость на высоте 20000 м: 743 км/ч
– Максимальная скорость на высоте 5000 м: 332 км/ч
– Крейсерская скорость: 0,7 М
– Посадочная скорость: 188 км/ч (при посадочной массе 23 400 кг)
– Время набора высоты потолка: 35 минут
– Длина разбега: 340 м
– Длина пробега: 875 м

Скорость отрыва М-55 Геофизика

– 175 км/ч

Дальность полета М-55 Геофизика

– Практическая дальность: 1220 км
– максимальная дальность полёта на потолке: 1315 км (с высоты 20 250 м до 20 620 м)
– максимальная дальность полёта на 17000 м: 5000 км
– Продолжительность полёта на потолке: 2 часа 14 минут
– Продолжительность полёта на 17000 м: 6,5 часа
– Время патрулирования: 48 минут

Практический потолок М-55 Геофизика

– 21 550 м

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector