Работа двигателя ракеты: фото, характеристики, видео

Ускоряемся и машем

Звучит оригинальная легенда примерно так: бывший сержант ВВС США неустановленным путем заполучил ракету JATO(Jet Assisted Take Off). JATO — топливные ракеты, используемые тяжёлыми транспортными самолетами ВВС для того, чтобы придать дополнительное реактивное ускорение на коротких взлетных полосах. Сержант выбрал подходящий прямой участок дороги в аризонской пустыне для проведения испытаний, вмонтировал JATO вШевроле Импала» 1967 года и стартовал.

Следствие установило, что водитель включил реактивное ускорение за 3,9 миль до места крушения, о чем свидетельствовали следытающей» резины покрышек автомобиля. Транспортное средство достигло скорости от 250 до 300 миль в час и продолжало движение с этой скоростью около 20-25 секунд. Преодолев 2,6 мили, пилот решил воспользоваться тормозом, но к тому моменту контакта покрышек с дорожным полотном почти не было.

Сержант проделал в скале тараном кратер метровой глубины, а от себя оставил коронеру на память лишь несколько зубов и фрагменты костей. Забавно, что на заднем бампере был наклеен стикерНравится, как я вожу? Позвони 1-800-EAT-SHIT»(«ешь дерьмо», англ. — Прим. ред.).

Вообще, достаточно грамотная легенда

Обращает на себя внимание и множество технических деталей, придающих достоверность. Особенно радует использование мускулистогоШевроле Импала» в версии 1965–1970 годов

Именно на таком хард-топ седане рассекают герои культового сериалаСверхъестественное».

Технически и к ускорителям придраться сложно — разве что называть авиационный ускоритель(JATO) топливной ракетой ну очень неправильно. Точная модель не называется, а потому попытаться проверить время работы или развиваемую мощность не получится. Выпускались они во множестве вариантов — как на основе жидкостных ракетных двигателей, так и твердотопливные. Производились для самых разных самолётов, от истребителей до военно-транспортных, и время работы у них было разное, поэтому тут проверить ничего не получится при всём желании.

Только стикер уже излишен.

C-130 ВВС США использует JATO

Впрочем, американцы, проверяющие реалистичность нарратива, начали с самого простого — с полицейских отчетов. Увы, тут сразу и оказалось, что в реальности такой аварии, да ещё с участием авиационного ускорителя, не зафиксировано — это лишь городская легенда, впервые появившаяся в интернете в 1995 году. После этого она всплывала в Сети множество раз, незначительно меняясь в деталях. То говорилось, что реактивному водителю дали Дарвиновскую премию(это фейк, в списке дарвиновских лауреатов товарища наИмпале» нет), то менялось место приобретения двигателя(на складах, снял прямо с самолёта, нашёл списанный на свалке)…

Геометрия зерна

Твердое ракетное топливо сгорает с поверхности обнаженного пороха в камере сгорания. Таким образом, геометрия топлива внутри ракетного двигателя играет важную роль в общих характеристиках двигателя. По мере горения поверхности метательного взрывчатого вещества его форма эволюционирует (предмет изучения внутренней баллистики), чаще всего изменяя площадь поверхности метательного взрывчатого вещества, подверженную воздействию дымовых газов. Поскольку объем топлива равен площади поперечного сечения, умноженной на длину топлива, объемный расход топлива равен площади поперечного сечения, умноженной на линейную скорость горения , а мгновенный массовый расход образующихся газов сгорания равен объемному расходу, умноженному на плотность топлива :
Аs{\ displaystyle A_ {s}}б˙{\ displaystyle {\ dot {b}}} ρ{\ displaystyle \ rho}

м˙знак равноρ⋅Аs⋅б˙{\ displaystyle {\ dot {m}} = \ rho \ cdot A_ {s} \ cdot {\ dot {b}}}

В зависимости от области применения и желаемой кривой тяги часто используются несколько геометрических конфигураций :

  • Круглый канал ствола: в конфигурации BATES создает прогрессивно-регрессивную кривую тяги.
  • Торцевая горелка: топливо горит от одного осевого конца к другому, образуя устойчивое продолжительное горение, но с тепловыми проблемами, смещением центра тяжести (ЦТ).
  • С-образный паз: метательный заряд с большим клином, вырезанным сбоку (в осевом направлении), создающим довольно длительную регрессивную тягу, но имеет тепловые трудности и асимметричные характеристики ЦТ.
  • Лунная горелка: смещенное от центра круглое отверстие дает прогрессивно-регрессивное продолжительное горение, хотя имеет небольшие асимметричные характеристики ЦТ.
  • Финоцил: обычно пяти- или шестиногой звездообразной формы, которая может производить очень ровную тягу с немного более быстрым горением, чем круглое отверстие, из-за увеличенной площади поверхности.

Из истории развития реактивных двигателей

Так покоряли скорость

На 1940-1950-е годы пришелся бум развития авиационного моторостроения — появились и начали серийно использоваться на самолетах реактивные двигатели различных конструкций. Эти силовые установки на боевых самолетах обеспечивали повышенную маневренность и лучшее ускорение по сравнению с традиционными поршневыми двигателями, а также позволяли выполнять, пусть и кратковременные, полеты на скорости, превышающей скорость звука.

В 1950-х годах началась разработка новых боевых и разведывательных летательных аппаратов, способных безопасно для себя действовать в воздушном пространстве, охраняемом системами противовоздушной обороны противника. В частности, ставка делалась на скорость полета — считалось, что чем быстрее летит самолет, тем меньше шансов у зенитной ракеты его догнать.

Необходимость наращивать скорость потребовала поиска новых конструкторских решений. Дело в том, что уже существовавшие тогда воздушно-реактивные авиационные двигатели при всех возможных ухищрениях не могли обеспечить скорость полета больше 2–2,5 числа Маха.

Разработчики авиационной техники начали экспериментировать с другими двигателями. Наиболее очевидным вариантом оказался ракетный двигатель, не имеющий ограничений по скорости встречного воздушного потока, поскольку для сжигания топлива атмосферный кислород он не использует.

Такой двигатель способен обеспечивать высокие скорости полета. Например, американский экспериментальный самолет Bell X-1 уверенно развивал скорости полета, близкие к 2 числам Маха, а в 1953 году достиг скорости в 2,5 числа Маха на высоте 21,4 тысячи метров. В 1963 году ракетоплан X-15 развил гиперзвуковую скорость в 5,58 числа Маха.

Тем не менее, ракетные двигатели плохо подходили для создания серийных военных, главным образом разведывательных, самолетов. Дело в том, что они не могли обеспечить большую продолжительность полета, а учитывая политическую обстановку того времени, она была крайне желательна, поскольку СССР от США отделяет значительное расстояние.

Так исследователи начали работать над комбинированными двигателями, которые могли бы сочетать в себе свойства силовых установок разных классов.

Если упрощенно описывать работу такого двигателя, то она выглядела следующим образом: ракетная силовая установка сжигала топливо не полностью, после чего газовая струя с не сгоревшим топливом поступала в прямоточный двигатель, где тормозилась и сжималась. Там топливо дожигалось, и отработанные газы выходили из двигателя, создавая тягу.

Аналогичные проекты существовали и в США. В целом по теме комбинированных двигателей разработки велись по нескольким направлениям. Помимо ракетно-прямоточных создавались турбопрямоточные (газотурбинный и прямоточный контуры) и ракетно-турбинные (ракетный и газотурбинный контуры).

Некоторые проекты таких силовых установок предполагали, что они смогут обеспечить скорость полета больше 3 чисел Маха, а некоторые, работающие в том числе и на водороде, — больше 5 чисел Маха. К гиперзвуковой принято относить скорость больше 5 чисел Маха.

Сопло

Сужающаяся-расширяющаяся конструкция ускоряет выхлопной газ из сопла, создавая тягу. Сопло должно быть изготовлено из материала, способного выдерживать высокую температуру потока дымовых газов. Часто используются жаропрочные материалы на основе углерода, такие как аморфный графит или углерод-углерод .

Некоторые конструкции включают в себя направленное управление выхлопом. Это может быть достигнуто за счет карданного шарнира сопла, как в SRB космических шаттлов, за счет использования реактивных лопастей в выхлопе, как в ракете V-2 , или за счет управления вектором тяги впрыска жидкости (LITV).

LITV заключается в впрыскивании жидкости в выхлопной поток после горловины сопла. Затем жидкость испаряется и в большинстве случаев вступает в химическую реакцию, добавляя массовый поток к одной стороне потока выхлопных газов и тем самым обеспечивая управляющий момент. Например, твердые ускорители Titan III C вводили четырехокись азота для LITV; танки можно увидеть по бокам от ракеты между главной ступенью и ускорителями.

Ранняя первая ступень Minuteman использовала один двигатель с четырьмя карданными соплами для обеспечения управления по тангажу, рысканью и крену.

Кожух

Кожух может быть изготовлен из различных материалов. Картон используется для небольших моделей двигателей с черным порохом , а алюминий используется для более крупных любительских двигателей на композитном топливе. Сталь использовалась для ускорителей космических кораблей . Графитовые эпоксидные кожухи с намотанной нитью используются для высокопроизводительных двигателей.

Корпус должен быть спроектирован таким образом, чтобы выдерживать давление и возникающие в результате нагрузки ракетного двигателя, возможно, при повышенной температуре. По конструкции кожух считается сосудом высокого давления .

Чтобы защитить корпус от агрессивных горячих газов, на внутренней стороне корпуса часто применяется временная термоизоляция, которая удаляется, чтобы продлить срок службы корпуса двигателя.

Двигатель

Твердотопливный двигатель состоит из трех базовых частей: корпуса, топлива и реактивного сопла.

Корпус больших РДТТ часто изготовляют намоткой прочных нитей с пропиткой твердеющими полимерами, получая крепкий и легкий композитный материал. Сопла РДТТ тоже часто делают из композитных материалов, используя различные вставки в напряженных частях сопла.

Важны форма и площадь поверхности горения в топливе. Обычно в центре топлива идет канал, который может расширяться и усложняться — например, принимая форму звезды. Чем больше площадь горения, тем больше расход топлива и тяга двигателя. Геометрия канала и ее изменение в процессе горения программируют величину и изменение тяги двигателя во время работы.

Схема устройства твердотопливного ракетного двигателя на примере ускорителя SLS

Геометрия порошкового блока

Сгорает поверхность порохового блока, открытая в камере сгорания . Следовательно, геометрия канала, который проходит через блок, играет важную роль в мощности двигателя малой тяги. По мере развития горения форма канала изменяется, изменяя площадь поверхности блока пороха, подверженного горению. Объем генерируемого газа (и, следовательно, давление) зависит от мгновенной площади поверхности (м²) и скорости сгорания (м / с):
Вs{\ displaystyle A_ {s}} бр{\ displaystyle b_ {r}}

м˙знак равноρ⋅Вs⋅бр{\ displaystyle {\ dot {m}} = \ rho \ cdot A_ {s} \ cdot b_ {r}}

Форма сечения канала и его центрирование индивидуальны для каждого двигателя. Для одного и того же подруливающего устройства форма секции может также отличаться в продольном направлении (таким образом, подруливающие устройства Ariane 5 имеют звездообразный канал в верхнем сегменте и круглый канал для двух других сегментов). Наиболее часто используемые геометрии зависят от желаемой кривой тяги:

  • Круговой канал: сначала увеличивается, а затем уменьшается кривая тяги.
  • Сгорание в конце блока: порошок горит в конце цилиндра, обеспечивая очень долгое время сгорания, но с термическими напряжениями, с которыми трудно справиться, и смещением центра тяжести.
  • С-образный паз: канал имеет большие срезанные углы вдоль своей оси, что позволяет создавать длительную уменьшающуюся тягу, но с термическими напряжениями и асимметрией центра тяжести.
  • Moon Burner: эксцентрический канал производит продолжительное горение, сначала увеличивающееся, а затем уменьшающееся, что представляет собой небольшую асимметрию центра тяжести.
  • Финоцил: канал имеет форму звезды, как правило, с пятью или шестью ветвями, что позволяет создавать практически постоянную тягу со скоростью сгорания немного быстрее, чем в случае цилиндрического канала, из-за более быстрого увеличения сгорания. поверхность.

Примеры твердого ракетного топлива

Примеры твердого ракетного топлива
EAP Ariane 5 (ECA) Американский космический шаттл
SRB
Средняя тяга (макс.) 498 тонн (671 тонна в вакууме) 1250 тонн (1380 тонн на уровне моря)
Время горения 129 секунд 123 секунды
Пустая масса 31 тонна 91 тонна
Общая масса 269 ​​тонн 590 тонн
Пропеллент Перхлорат аммония , алюминиевый порошок и полибутадиен Перхлорат аммония (70%), алюминиевый порошок (17%) и полибутадиен (11%)
Удельный импульс 275 с 268 с
Максимальное давление 61 бар
Размер Высота × Диаметр 31 × 3 метра 45 × 3,71 метра
Конверт Сталь, состоящая из трех сегментов Пятисегментная сталь
Привязка
Тепловая защита
Кривая тяги / форма канала Звездный канал (верхний сегмент), затем цилиндрический Канал звезды с одиннадцатью ветвями (верхний сегмент), двойной конус, усеченный в остальных четырех сегментах
Сопло Металлический и композитный
Ориентация тяги 6 ° с помощью гидроцилиндра 8 ° с помощью гидроцилиндра
Другой Два вспомогательных электрогенератора, работающих на гидразине

Рецепт смеси

Твердое топливо по своему составу очень разнообразно, и делится на несколько типов. Львиную долю занимают смесевые топлива — тонко измельченные и перемешанные неорганические компоненты, соединенные связующими веществами. Одни из них являются окислителями, другие горючими, они реагируют во фронте горения топлива.

Помимо горючего и окислителя в топливо добавляют многие вспомогательные вещества. Чтобы топливо было пластичным, хорошо размешивалось и могло подаваться при снаряжении в корпус двигателя шнековыми машинами, в топливо вводят пластификаторы. Чтобы придать ему твердость, в топливо добавляют эпоксидные отвердители. При длительном вертикальном положении массив топлива не должен оплывать, давать трещины и накапливать внутренние напряжения — ракеты иногда стоят на боевом дежурстве десятки лет.

Если в топливе появятся трещины, то при работе двигателя они станут нерасчетными площадями горения, оплывший свод потеряет расчетную толщину и изменит форму канала, а возникшие в массиве топлива напряжения приведут к дополнительному разгару в этих местах. Эти риски возрастают под действием взлетной перегрузки, в разы усиливающей вес и давление массы топлива.

Физические свойства топлива регулируются связующими добавками специальных стабилизаторов. Также в топливо добавляют ингибиторы и катализаторы горения, флегматизаторы (они уменьшают чувствительность топлива к трению, что необходимо при изготовлении смеси и снаряжения двигателя), ингибиторы окисления и другие добавки.

Состав топлива ускорителя SLS таков:

  • 69,6 процентов окислителя, перхлората аммонияNH4ClO4,
  • 16 процентов металлического алюминия,
  • 12 процентов полибутадиенакрилонитрила,
  • 1,96 процента эпоксидного отвердителя,
  • 0,4 процента железа, которое используется в качестве катализатора.

В молекуле перхлората аммония — четыре атома кислорода. Они освобождаются при нагревании и окисляют металлический алюминий и полибутадиенакрилонитрил. Полибутадиенакрилонитрил, или бутадиен-нитрильный каучук (БНК) — это жесткая резина, которая работает и горючим, и связующим. Углерод и водород БНК при сгорании образуют газовое рабочее тело — смесь в основном углекислого газа и водяного пара. Второе горючее, мелкодисперсный алюминий, сгорает без выделения газов, но температура горения алюминия очень высока, около 3300 °С. Это повышает температуру газов, передавая им тепло сгорания металла.

Недостатки [ править ]

Твердотопливные ускорители не поддаются контролю и обычно должны гореть до полного истощения после воспламенения, в отличие от систем на жидком топливе или двигательных установках на холодном газе . Однако системы прерывания запуска и системы разрушения дальности могут попытаться перекрыть поток пороха с помощью кумулятивных зарядов . По состоянию на 1986 год оценки частоты отказов SRB варьировались от 1 на 1000 до 1 на 100000. Сборки SRB вышли из строя внезапно и катастрофически. Блокировка или деформация форсунки может привести к избыточному давлению или снижению тяги, в то время как дефекты в корпусе ускорителя или муфтах ступени могут вызвать разрушение узла из-за увеличения аэродинамических напряжений. Дополнительные виды отказа включают засорение ствола и нестабильность горения. Отказ уплотнительного кольца на правом твердотопливном ускорителе космического корабля » Челленджер » привел к его разрушению вскоре после старта.

Твердотопливные ракетные двигатели могут представлять опасность при обращении с ними на земле, поскольку полностью заправленный ускоритель несет риск случайного возгорания. Такой несчастный случай произошел в августе 2003 бразильских взрыва ракеты на бразильском Centro де Lançamento де Алькантар VLS запуска ракеты площадке, убив 21 техников.

Авиационный ГТД Климов ГТД-350 для вертолета Ми-2

Впервые разработка ГТД-350 началась еще в 1959 году в ОКБ-117 под начальством конструктора С.П. Изотова. Изначально задача состояла в разработке малого двигателя для вертолета МИ-2.

МИ-2

На этапе проектирования были применены экспериментальные установки, использован метод поузловой доводки. В процессе исследования созданы методики расчета малогабаритных лопаточных аппаратов, проводились конструктивные мероприятия по демпфированию высокооборотных роторов. Первые образцы рабочей модели двигателя появились в 1961 году. Воздушные испытания вертолета Ми-2 с ГТД-350 впервые были проведены 22 сентября 1961 года. По результатам испытаний, два вертолетных двигателя разнесли в стороны, переоснастив трансмиссию.

Государственную сертификацию двигатель прошел в 1963 году. Серийное производство открылось в польском городе Жешув в 1964 году под руководством советских специалистов и продолжалось до 1990 года.

Малый газотурбинный двигатель отечественного производства ГТД-350 имеет следующие ТТХ:

— вес: 139 кг; — габариты:  1385 х 626 х 760 мм; — номинальная мощность на валу свободной турбины: 400 л.с.(295 кВт); — частота вращения свободной турбины: 24000; — диапазон рабочих температур -60…+60  ºC; — удельный расход топлива 0,5 кг/кВт час; — топливо — керосин; — мощность крейсерская:  265 л.с; — мощность взлётная: 400 л.с.

В целях безопасности полетов на вертолет Ми-2 устанавливают 2 двигателя. Спаренная установка позволяет воздушному судну благополучно завершить полет в случае отказа одной из силовых установок.

ГТД — 350 на данный момент морально устарел, в современной малой авиации нужны более можные, надежные и дешевые газотурбинные двигатели. На современный момент новый и перспективным отечественным двигателем является МД-120, корпорации «Салют». Масса двигателя — 35кг, тяга двигателя 120кгс.

Общая схема

Конструктивная схема ГТД-350 несколько необычна за счет расположения камеры сгорания не сразу за компрессором, как в стандартных образцах, а за турбиной. При этом турбина приложена к компрессору. Такая необычная компоновка узлов сокращает длину силовых валов двигателя, следовательно, снижает вес агрегата и позволяет достичь высоких оборотов ротора и экономичности.

В процессе работы двигателя, воздух поступает через ВНА, проходит ступени осевого компрессора, центробежную ступень и достигает воздухосборной улитки. Оттуда, по двум трубам воздух подается в заднюю часть двигателя к камере сгорания, где  меняет направление потока на противоположное и поступает на турбинные колеса. Основные узлы ГТД-350: компрессор, камера сгорания, турбина, газосборник и редуктор. Системы двигателя представлены: смазочной, регулировочной и противообледенительной.

Агрегат расчленен на самостоятельные узлы, что позволяет производить отдельные запчасти и обеспечивать их быстрый ремонт. Двигатель постоянно дорабатывается и на сегодняшний день его модификацией и производством занимается ОАО «Климов». Первоначальный ресурс ГТД-350 составлял всего 200 часов, но в процессе модификации был постепенно доведен до 1000 часов. На картинке представлена общая смеха механической связи всех узлов и агрегатов.

В космос на самолете

В феврале 2018 года российское Опытно-конструкторское бюро имени Люльки провело испытания комбинированного турбопрямоточного пульсирующего детонационного двигателя. Испытания установки — уменьшенного прототипа двигателя — проходили в турбореактивном и прямоточном режимах.

Частота детонации топливной смеси в новом российском двигателе составляет 20 килогерц. Силовая установка разрабатывается для применения на самолетах, способных на традиционный аэродромный взлет и полеты за пределы атмосферы.

Детонацией называется такое горение какого-либо вещества, в котором фронт горения распространяется быстрее скорости звука. При этом по веществу проходит ударная волна, за которой следует химическая реакция с выделением большого количества энергии.

Детонационные двигатели конструктивно делятся на два основных типа: импульсные (или пульсирующие) и ротационные.

В импульсных двигателях происходят короткие взрывы по мере сгорания небольших порций топливо-воздушной смеси. В ротационных же горение смеси происходит в кольцевой камере постоянно без остановки. Детонационные двигатели способны работать в широком пределе скоростей полета — от 0 до 5 чисел Маха.

Считается, что такие силовые установки могут выдавать большую мощность, потребляя топлива меньше, чем обычные реактивные двигатели. При этом конструкция детонационных двигателей относительно проста: в них отсутствуют компрессор и многие движущиеся части.

Космопланы с комбинированными двигателями смогут взлетать с наземных аэродромов и самостоятельно вылетать за пределы атмосферы. Такие аппараты можно будет использовать как для дешевой доставки небольших спутников на орбиту, так и для космического туризма.

Британская компания Reaction Engines создает собственный комбинированный двигатель для космоплана Skylon собственной же разработки (хотя изначально речь шла о небольшой ракете-носителе). Британский двигатель можно отнести к классу ракетно-турбинных комбинированных силовых установок, поскольку он будет сочетать в себе свойства турбореактивного и ракетного двигателей.

Этой схемой работы SABRE похож на комбинированный двигатель LACE, конструкцию которого в 1980-х годах предложил британский конструктор Алан Бонд.

В двигателе LACE на атмосферном участке полета жидкий кислород планировалось получать из атмосферного воздуха путем его охлаждения. Кроме того, в LACE турбина должна была раскручиваться газами, истекающими из ракетной части двигателя. Вращение турбины передавалось бы на компрессор, сжимающий воздух, который поступал бы из воздухозаборника.

Представление

Хорошо спроектированное твердое ракетное топливо обеспечивает удельный импульс в 265 секунд, который можно сравнить с импульсом смеси керосин / жидкий кислород (330  с ) и жидкий водород / жидкий кислород (450  с ).

Этот тип двигателя малой тяги может обеспечить большую тягу при относительно низких затратах. По этой причине твердотопливные ракетные двигатели используются на первой ступени ракет, в то время как двигатели с высоким удельным импульсом, особенно на водороде, зарезервированы для верхних ступеней. Кроме того, твердотельные двигатели всегда использовались для вывода спутников на их конечную орбиту ( апогейный двигатель ), потому что они просты, надежны, компактны и имеют относительно высокую удельную энергию.

Для использования в военных целях еще одним важным преимуществом является возможность использования этого типа топлива после длительных периодов хранения и скорость его использования (отсутствие длительной и деликатной дозаправки топливом непосредственно перед вводом в действие. Огонь).

Сопло

Сужающаяся-расширяющаяся конструкция ускоряет выхлопной газ из сопла, создавая тягу. Сопло должно быть изготовлено из материала, способного выдерживать высокую температуру потока дымовых газов. Часто используются жаропрочные материалы на основе углерода, такие как аморфный графит или углерод-углерод .

Некоторые конструкции включают в себя направленное управление выхлопом. Это может быть достигнуто за счет карданного шарнира сопла, как в SRB космических шаттлов, за счет использования реактивных лопастей в выхлопе, как в ракете V-2 , или за счет управления вектором тяги впрыска жидкости (LITV).

LITV заключается в впрыскивании жидкости в выхлопной поток после горловины сопла. Затем жидкость испаряется и в большинстве случаев вступает в химическую реакцию, добавляя массовый поток к одной стороне потока выхлопных газов и тем самым обеспечивая управляющий момент. Например, твердые ускорители Titan III C вводили четырехокись азота для LITV; танки можно увидеть по бокам от ракеты между главной ступенью и ускорителями.

Ранняя первая ступень Minuteman использовала один двигатель с четырьмя карданными соплами для обеспечения управления по тангажу, рысканью и крену.

Состав комплекса

Ракето-торпеда

В состав комплекса УРК-5 входят:

  • — крылатые ракеты 85РУ с самонаводящимися противолодочными торпедами УМГТ-1 в качестве боевых частей;
  • — пусковые установки;
  • — корабельная аппаратура пусковой автоматики;
  • — средства наземного обслуживания.

Крылатая ракета 85РУ комплекса УРК-5 несет на пилоне боевую часть — малогабаритную (калибр 400 мм) противолодочную самонаводящуюся торпеду УМГТ-1. Применение в комплексе управляемой крылатой ракеты позволяет достичь высокую эффективность комплекса в сравнении с использованием баллистической ракеты аналогичного назначения. Для поражения надводных кораблей в ракете встроена тепловая головка самонаведения с дополнительным зарядом взрывчатки (вес 185 кг), который был расположен в гондоле ракеты.
Стартовый двигатель ракеты — твердотопливный 85РСД, маршевый — также твердотопливный 85РМД. Маршевый полёт ракеты использовался только на постоянной высоте. Планер изготовлен цельнометаллическим и нёс на себе моноплан со среднерасположенным крылом. На конце фюзеляжа располагался руль направления. Боевая часть в виде торпеды размещалась под корпусом ракеты, что позволяло уменьшить общую длину ракеты.
Для изготовления применялись в основном следующие материалы: АЛ-19, АМГ-6, АЛ-19Т, сталь 30ХГСА.

Устройство ракето-торпеды

Пусковая установка КТ-106 была взята с системы УРПК-3 «Метель». Она представляла собой 4 контейнера с возможностью горизонтального наведения. Наличие горизонтального наведения позволяло исключить дополнительные маневрирования корабля при атаке и захвате цели. Углы горизонтальной наводки были ограниченными. В основном корабли оснащались только двумя такими пусковыми установками с четырьмя ракетами на каждой. Стрельба с установки производиться залпами по 2 ракеты или одиночными ракето-торпедами по данным собственных ГАС и внешних источников целеуказания — кораблей, вертолетов или гидроакустических буев на дальностях от 6 до 55 км.

Принцип действия комплекса был следующий. По команде системы управления на корабле торпеда в определённой расчетной точке отсоединяется от ракеты и спускается на парашюте. Следующим шагом является её постепенно заглубление. На протяжении которого она проводит циркуляционный поиск системой самонаведения, находит цель в поражаемом радиусе и атакует её.
Скорость торпеды УМГТ-1 (разработчик — НИИ «Гидроприбор») — 41 узел, дальность хода 8 км, глубина хода 500 м, радиус реагирования системы самонаведения 1,5 км.

Твердотопливные ракеты: конфигурации

Читая описание для современных твердотопливных ракет, часто можно найти вот такое:

Здесь объясняется не только состав топлива, но и форма канала, пробуренного в центре топлива. «Перфорация в виде 11-конечной звезды» может выглядеть вот так:

Твердотопливные двигатели обладают тремя важными преимуществами:

  • простота
  • низкая стоимость
  • безопасность

Но есть и два недостатка:

  • тягу невозможно контролировать
  • после зажигания двигатель нельзя отключить или запустить повторно

Недостатки означают, что твердотопливные ракеты полезны для непродолжительных задач (ракеты) или систем ускорения. Если вам понадобится управлять двигателем, вам придется обратиться к системе жидкого топлива.

Электрические ракетные двигатели (ЭРД)

Еще один потенциальный конкурент химических РД – электрический РД, работающий за счет электрической энергии. ЭРД может быть электротермическим, электростатическим, электромагнитным или импульсным.

История создания

Первый ЭРД был сконструирован в 30-х годах советским конструктором В.П. Глушко, хотя идея создания такого двигателя появилась еще в начале ХХ века. В 60-х годах ученые СССР и США активно работали над созданием ЭРД, и уже в 70-х годах первые образцы начали использоваться в космических аппаратах в качестве двигателей управления.

Устройство и принцип работы

Электроракетная двигательная установка состоит из самого ЭРД, строение которого зависит от его типа, систем подачи рабочего тела, управления и электропитания. Электротермический РД нагревает поток рабочего тела за счет тепла, выделяемого нагревательным элементом, или в электрической дуге. В качестве рабочего тела используется гелий, аммиак, гидразин, азот и другие инертные газы, реже – водород.

Электростатические РД делятся на коллоидные, ионные и плазменные. В них заряженные частицы рабочего тела ускоряются за счет электрического поля. В коллоидных или ионных РД ионизация газа обеспечивается ионизатором, высокочастотным электрическим полем или газоразрядной камерой. В плазменных РД рабочее тело – инертный газ ксенон – проходит через кольцевой анод и попадает в газоразрядную камеру с катод-компенсатором. При высоком напряжении между анодом и катодом вспыхивает искра, ионизирующая газ, в результате чего получается плазма. Положительно заряженные ионы выходят через сопло с большой скоростью, приобретенной за счет разгона электрическим полем, а электроны выводятся наружу катодом-компенсатором.

Электромагнитные РД имеют свое магнитное поле – внешнее или внутреннее, которое ускоряет заряженные частицы рабочего тела.

Импульсные РД работают за счет испарения твердого топлива под действием электрических разрядов.

Среди преимуществ ЭРД:

  • высокий показатель удельного импульса, верхний предел которого практически не ограничен;
  • малый расход топлива (рабочего тела).

Недостатки:

  • высокий уровень потребления электроэнергии;
  • сложность конструкции;
  • небольшая тяга.

На сегодняшний день использование ЭРД ограничено их установкой на космические спутники, а в качестве источников электроэнергии для них применяются солнечные батареи. Вместе с тем именно эти двигатели могут стать теми силовыми установками, которые дадут возможность исследовать космос, поэтому работы по созданию их новых моделей активно ведутся во многих странах. Именно эти силовые установки чаще всего упоминали фантасты в своих произведениях, посвященных покорению космоса, их же можно встретить и в научно-фантастических фильмах. Пока именно ЭРД является надеждой на то, что люди все же смогут путешествовать к звездам.

голоса

Рейтинг статьи

Как работают ракетные двигатели?

Освоение космоса — самое удивительное из мероприятий, когда-либо проводимых человечеством. И большую часть удивления составляет сложность. Освоение космоса осложняется массой проблем, которые нужно решить и преодолеть. Например, безвоздушное пространство, проблема с температурой, проблема повторного входа в атмосферу, орбитальная механика, микрометеориты и космический мусор, космическая и солнечная радиация, логистика в условиях невесомости и другое. Но самая сложная проблема — это просто оторвать космический корабль от земли. Здесь не обойтись без ракетного двигателя, поэтому в этой статье мы рассмотрим именно это изобретение человечества.

С одной стороны, ракетные двигатели настолько просто устроены, что за небольшую копейку вы сможете построить ракету самостоятельно. С другой стороны, ракетные двигатели (и их топливные системы) настолько сложны, что доставкой людей на орбиту, по сути, занимаются только три страны мира.

Когда люди задумываются о двигателе или моторе, они думают о вращении. К примеру, бензиновый двигатель автомобиля производит энергию вращения, чтобы двигать колеса. Электродвигатель производит энергию вращения для движения вентилятора или диска. Паровой двигатель делает то же самое, чтобы вращать паровую турбину.

Ракетные двигатели принципиально отличаются. Ракетные двигатели — это реактивные двигатели. Основной принцип движения ракетного двигателя — это знаменитый принцип Ньютона, «на каждое действие есть равное противодействие». Ракетный двигатель выбрасывает массу в одном направлении, а благодаря принципу Ньютона движется в противоположном направлении.

Ракетный двигатель, как правило, выбрасывает массу в форме газа под высоким давлением. Двигатель выбрасывает массу газа в одном направлении, чтобы получить реактивное движение в противоположном направлении. Масса идет от веса топлива, которое сгорает в двигателе ракеты. Процесс горения ускоряет массы топлива так, что они выходят из сопла ракеты на высокой скорости. Тот факт, что топливо превращается из твердого тела или жидкости в процессе сгорания, никак не меняет его массу. Если вы сожжете килограмм ракетного топлива, вы получите килограмм выхлопа в виде горячих газов на высокой скорости. Процесс сжигания ускоряет массу.

Преимущества

В сравнении с ракеты на жидком топливе, то твердотопливный SRB были способны обеспечивать большую тягу с относительно простой конструкцией. Они обеспечивают большую тягу без значительных требований к охлаждению и изоляции и создают большую тягу для своих размеров. Добавление съемных SRB к транспортному средству, также работающему от жидкостных ракет, известных как постановка уменьшает количество необходимого жидкого топлива и снижает массу пусковой установки. Твердотопливные ускорители дешевле проектировать, тестировать и производить в долгосрочной перспективе по сравнению с эквивалентными жидкостными ракетными ускорителями. Возможность повторного использования компонентов в нескольких полетах, как в сборке Shuttle, также снизила затраты на оборудование.

Одним из примеров повышения производительности, обеспечиваемого SRB, является Ариана 4 ракета. Базовая модель 40 без дополнительных ускорителей была способна[] подъема полезной нагрузки 4795 фунтов (2175 кг) до Геостационарная переходная орбита. Модель 44P с 4 твердотопливными ускорителями имеет полезную нагрузку 7 639 фунтов (3 465 кг) на ту же орбиту.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector