Как работает ионный двигатель и где он применяется

Достоинства и недостатки

Плазменные ракетные двигатели за десятилетия своего использования зарекомендовали себя следующими преимуществами в сравнении с традиционными реактивными двигателями на «химической» тяге:

  • Высокий импульс;
  • Малая масса расходуемого рабочего тела;
  • Малые габариты самого двигателя.

В то же время свойственные таким двигателем недостатки сводятся к главному: слишком малой тяге. Они существенно уступают по данным показателям обычным ракетным двигателям, что делает их использование крайне неэффективным. Кроме того, весьма высоки затраты энергии на ионизацию. К тому же в условиях земной атмосферы высвобождаемые ионы крайне химически активны, образуя весьма агрессивные соединения.

Таким образом, ближайшее будущее плазменных ракетных двигателей будет связано исключительно с их применением на достаточно дальних космических маршрутах и уже сложившейся ролью дополнительных двигателей на околоземных спутниках, которым требуется совершать манёвры в космосе. В последнем варианте перспективным направлением для использования ионных двигателей может стать уборка орбитального «космического мусора», проблема с которым ежегодно обостряется.

голоса

Рейтинг статьи

История ионного двигателя

Впервые ионный двигатель был продемонстрирован Эрнстом Штулингером, ученым НАСА немецкого происхождения, а практическое воплощение ему придавал Гарольд Кауфман в Научно-исследовательском центре Льюиса при НАСА (ныне он носит имя Гленна), начиная с 1957 года и до начала 1960-х.

Ионный двигатель

Использование ионных двигателей в космосе было впервые демонстрировано на тестовых моделях ракет «SERT-1» и «SERT-2». В качестве реагирующей массы эти двигатели использовали ртуть. Первой моделью стала «SERT-1», запущенная 20 июля 1964 года, которая успешно доказала, что технология работает в космосе так, как было рассчитано. Вторая тестовая модель, «SERT-2», запущенная 3 февраля 1970 года, подтвердила возможность работы двух ионных двигателей на ртути в течение нескольких тысяч часов. Несмотря на демонстрации в 1960-х и 1970-х годах, они, тем не менее, редко использовались до конца 1990-х.

Научно-исследовательский центр Гленна при НАСА продолжал разрабатывать электростатические ионные двигатели с сеткой все 1980-е годы, разрабатывая солнечную энергетическую установку для НАСА типа «NSTAR», который был успешно использован для зонда «Deep Space 1» — первой миссии по выводу на межпланетную траекторию аппарата, которая использовала электродвигатель в качестве основной силовой установки. На данный момент этот двигатель установлен на аппарат «Dawn», следующий к астероидному поясу. Компания «Hughes Aircraft Company» (сейчас – «L-3 ETI») разработала ионный двигатель на ксеноне «XIPS» для позиционирования станции относительно геосинхронных спутников (используется более 100 двигателей). Сегодня НАСА работает над электростатическим ионным двигателем «HiPEP» с мощностью в 20-50 кВ, который будет обладать более высоким КПД, удельным импульсом и большим сроком службы по сравнению с «NSTAR». Компания «Aerojet» недавно завершила тестирования прототипа ионного двигателя «NEXT».

Начиная с 1970-х годов, совместное предприятие «ArianeGroup» и Гисенский университет занимались разработкой радиочастотного ионного двигателя. Двигатели «RIT-10» используются для полетов Европейского возвращаемого космического модуля «EURECA» и аппарата «ARTHEMIS». Британская компания «Qinetiq» разработала двигатели «T5» и «T6», первый из которых использовался для миссии «GOCE», а второй, вероятно, — для миссии «BepiColombo». Японцы, разработавшие микроволновой двигатель «10», использовали его для космического аппарата «Хаябуса».

Программа

По результатам лекций слушатели приобретут знания в следующих областях: история космонавтики, принципы создания и использования космических аппаратов, устройство Вселенной и Солнечной системы, методы и системы исследования космического пространства и подготовки космических миссий.

Программа состоит из трех основных блоков:

— Астрономия и астрофизика

— Наземные системы исследования космоса и подготовка космических миссий.

Цели и задачи программы

Программа направлена на формирование инженерного, научно-технического мышления у детей, освоения теоретических знаний по ракетно-космическим технологиям, астрономии и астрофизике

Важной составляющей является формирование представления о профессиях, связанных с изучением и освоением космоса среди школьников с возможностью выбора в будущем профессий, связанных с космической инженерией, астрономией, фундаментальными науками данной области знаний. У учащихся будет возможность принять участие в научных дискуссиях по темам лекций с ведущими учёными и специалистами

Главная цель: обучение учащихся Образовательного центра «Сириус» научным знаниям в области космических исследований с привлечением ведущих специалистов и учёных данной отрасли науки и техники.

— строение Солнечной системы;

— основные объекты Вселенной и принципы их взаимодействия;

— физику и химию процессов в космическом пространстве;

— наземные комплексы для изучения космического пространства;

— программы по подготовке космонавтов и оборудования к различным космическим миссиям;

Все участники, успешно освоившие курс, смогут получить сертификат о прохождении программы.

Как работает ионный двигатель и где он применяется

Ученые уже придумали или готовятся придумать много новых типов двигателей для космических кораблей. Самые смелые предположения даже говорят про варп-двигатель, который должен разгонять корабль до скоростей, в несколько раз превышающих скорость света за счет искривления пространства в мощном гравитационном поле. Пока это только фантастика, которая скоро может стать перспективой. Зато ионные двигатели уже существуют и даже применяются. Они уже на данном этапе могут развивать скорости в несколько раз выше тех, что предлагают традиционные ракетные двигатели. Правда, они не могут отправить ракету в космос. Вот такие противоречия. Но как же тогда работает ионный двигатель и почему на данном этапе это действительно является технологией будущего?

Такой двигатель может разгоняться до очень больших скоростей.

Ионный двигатель широко представлен в фантастической литературе, компьютерных играх и кинематографе (так в звёздных войнах экономичный ионный двигатель развивает скорость до трети световой и используется для перемещения в обычном пространстве на небольшие по космическим меркам расстояния — например в пределах планетарной системы ), но для практической космонавтики стал доступен только во второй половине XX века. Реальный ионный двигатель по своим техническим характеристикам (и в первую очередь по силе тяги) значительно уступает своим литературным прообразам (так Эдгард Чуэйри образно сравнивает ионный двигатель с автомобилем, которому нужно двое суток для разгона с 0 до 100 км/ч) .

Ионный двигатель является первым хорошо отработанным на практике типом электрического ракетного двигателя. Концепция ионного двигателя была выдвинута в 1917 году Робертом Годдардом , а в 1954 году Эрнст Штулингер ru en детально описал эту технологию, сопроводив её необходимыми вычислениями .

Первый функционирующий ионный электростатический двигатель (создан в США в NASA John H. Glenn Research Center at Lewis Field) был построен под руководством Гарольда Кауфмана ru en в 1959 году. В 1964 году прошла первая успешная демонстрация ионного двигателя в суборбитальном полёте (SERT I) . Двигатель успешно работал в течение запланированной 31 минуты. В 1970 году прошло испытание, призванное продемонстрировать эффективность долговременной работы ртутных ионных электростатических двигателей в космосе (SERT II) .

В качестве основного (маршевого) двигателя ионный двигатель был впервые применён на космическом аппарате Deep Space 1 (первый запуск двигателя — 10 ноября 1998 г.). Следующими аппаратами стали европейский лунный зонд Смарт-1, запущенный 28 сентября 2003 года , и японский аппарат Хаябуса, запущенный к астероиду Итокава в мае 2003 года .

Следующим аппаратом NASA, обладающим маршевыми ионными двигателями, стала (после ряда замораживаний и возобновления работ) АМС Dawn, которая стартовала 27 сентября 2007 года. Dawn предназначен для изучения Весты и Цереры и несёт три двигателя NSTAR, успешно испытанных на Deep Space 1 .

Европейское Космическое Агентство установило ионный двигатель на борту спутника GOCE, запущенного 17 марта 2009 года на сверхнизкую околоземную орбиту высотой около 260 км. Ионный двигатель создаёт в постоянном режиме импульс, компенсирующий атмосферное трение и другие негравитационные воздействия на спутник .

Возможности и приложения

По самому своему принципу ионизации порохового газа эти двигатели работают только в вакууме (космос или испытательная камера).

Их низкая тяга, всего несколько десятых долей ньютона , эквивалентная дыханию человека рукой на расстоянии 20  см , ограничивает их использование в орбитальных полетах или, в более общем смысле, в областях со слабыми гравитационными полями.

Эти типы двигателей имеют большие удельные импульсы  : от 5000 до 25000 с .

Двигатели этого типа хорошо подходят для автоматических исследовательских миссий (зонд) и сначала очень серьезно рассматриваются для удаленных пилотируемых миссий, таких как Марс .

Выходной ионный ток — важный параметр в этом типе двигателя. Его можно рассчитать в первом приближении как сумму (интеграл на поверхности) нагрузок, пересекающих выходную плоскость, на среднюю скорость нагрузок. Тяга двигателя может быть легко рассчитана по выходному ионному току.

Обзор основных деталей

Цилиндр двигателя

Основная деталь цилиндра двигателя – гильза. Существуют гильзы двух типов:

впрессованные гильзы, (в алюминиевом блоке);

съёмные гильзы – они бывают «мокрыми» и «сухими».

Головка блока цилиндров двигателя – ГБЦ

Она закреплена сверху конструкции направляющими шпильками и болтами крепления ГБЦ. Очень важная деталь – прокладка блока, она расположена между ГБЦ и самим блоком. Изготавливают ее из асбестометалла, металла, а может быть безасбестовой.

Головка блока цилиндров двигателя состоит из: камеры сгорания, мест крепления ГРМ, рубашки охлаждения, каналов для смазки, резьбовых отверстий свечей (форсунок), отверстий впускных и выпускных каналов.

Отдельно стоит упомянуть технологию крепления ГБЦ. Для этого используются специальные болты крепления, а сама операция выполняется согласно инструкциям производителя.

В частности затягивать головку нужно динамометрическим ключом с соблюдением момента затяжки и пользуясь схемой затяжки болтов.

Картер двигателя

Картер считается частью блока, и крепится к нему снизу. Закрывается поддоном. То есть, картер – можно назвать корпусом кривошипно-шатунного механизма.

В

корпусе блока цилиндров также есть отверстия и каналы для смазки и охлаждения. Сливная пробка нужна, чтобы осуществить слив охлаждающей жидкости.

Моторное масло, сливается после извлечения пробки в поддоне картера. Предусмотрено место для привода распределительного вала.

Спереди оно закрыто крышкой блока цилиндров. Внизу размещены опоры коренных подшипников коленчатого вала.

Теперь, когда вы сами познакомились с конструкцией блока цилиндров двигателя, поделитесь новыми знаниями с друзьями в соц.сетях. Пусть тоже подпишутся на наш блог, и знакомятся с увлекательным миром автотехники.

Рекомендует еще посмотреть статейки про Шатун, Поршень и Коленчатый вал. Интересно.

Источник

Где используются ионные двигатели

Вам могло показаться, что ионные двигатели существуют только на бумаге и в лабораториях, но это не так. Они уже использовались, как минимум, в семи завершившихся миссиях и используются минимум в четырех действующих.

В том числе такие двигатели используются в рамках миссии BepiColombo, запущенной 20 октября 2018 года. В этой меркурианской миссии используются 4 ионных двигателя суммарной мощностью 290 миллиньютонов. Кроме этого, аппарат оснащен и химическим двигателем. Оба они в сочетании с гравитационными маневрами должны обеспечить выход корабля на орбиту Меркурия в качестве искусственного спутника.

Космический аппарат BepiColombo.

Использованием этих двигателей не брезгует и Илон Маск в своей программе Starlink, за счет этих двигателей корабль должен совершать небольшие маневры и уклоняться от космического мусора.

Сейчас планируется доставка на МКС ионной тяговой установки, которая позволит управлять положением станции в автоматическом режиме. Ее мощность подобрана исходя из доступной электрической мощности станции. Для большей надежности планируется так же доставка батарей, которые обеспечат 15 минут автономной работы двигателя.

Но самым необычным проектом был ”Прометей”. Корабль в рамках этого проекта планировалось отправить к Юпитеру со скорость 90 км/c. Ионный двигатель корабля должен бал работать от ядерного реактора, но из-за технических трудностей в 2005 году проект закрыли.

Газораспределительный механизм

— впускных и выпускных клапанов.

Распределительный вал

Как правило (в современных автомобилях) расположен в верхней части головки цилиндров.

Неотъемлемой частью распредвала являются его кулачки. Их ровно столько, сколько впускных и выпускных клапанов. Эти кулачки надавливая на рычаг толкателя клапана, открывают его, а «сбегая» с рычага, клапан закрывается от действия возвратной пружины.

Клапана

Клапан состоит из плоской шляпки (головки) и стержня. Причем, диаметр головки впускного клапана делают несколько больше, чем диаметр головки выпускного клапана (это делается для лучшего наполнения топливом цилиндров).

Как работает ионный двигатель

Ионный двигатель использует не « топливо », как другие ракетные двигатели, а нейтральный газ ( ксенон ), который никоим образом не является источником энергии и который используется только для «массы опоры», которую он представляет (ее инерционной массы). . Таким образом, этот нейтральный газ не сжигается (не горит), а просто ионизируется . Эти ионы затем высвобождается через проход двух сильно электрически заряженных ворот и , таким образом пройти ускорение . Ускоряющая сила ионов вызывает в противоположном направлении: это движущая сила ионного двигателя.

Ионы восстанавливают свои электроны непосредственно перед выходом из двигателя, чтобы поддерживать электрическую нейтральность транспортного средства и выбрасываемого нейтрального газа. В отсутствие нейтрализующей электронной пушки ионы, покидающие ионный двигатель малой тяги, притягиваются к главному отсеку кулоновским притяжением из-за их ионного характера. Таким образом, нейтрализуя их, атомы перемещаются к внешней стороне устройства без притяжения в направлении, противоположном их смещению.

Это ксенон ( благородный газ ), который используется в качестве «топлива» (а точнее, в качестве опорной массы ). В прошлом были проверены цезий , натрий и ртуть , но эти материалы разрушают двигатель . Согласно американскому исследованию 1998 года, ртуть слишком токсична, что усложняет операции, а цезий не подходит, поскольку приводит к деградации поверхности.

Электрическая энергия , необходимая для ионизации нейтрального газа и ускорения ионов высвобожденных получаются панелями солнечных батарей . Планируется использовать ядерные реакторы для выработки достаточной энергии либо на большом расстоянии от Солнца, либо с целью получения большей тяги.

Из чего сделан блок цилиндров двигателя

Самый распространенный материал, который используется при производстве ‒ чугун. Это традиционный вариант.

На втором месте алюминий. Вернее его различные сплавы. Ну и еще достаточно экзотический материал – магниевый сплав. Теперь обо всех трех вариантах – более подробно.

Чугун

Это – традиционный материал, из него на протяжении многих десятилетий изготавливали эту деталь.

Чугун использовали с добавками: никелем, хромом. Среди положительных качеств чугунного изделия можно выделить: меньшую чувствительность к перегреву, жесткость, которая очень важна при форсировке двигателя.

Устройство, в основном, работает при частой смене температурного режима, поэтому изделия из чугуна в приоритете. Главный недостаток – значительный вес, который ухудшает динамику легкового авто.

Алюминий

Обладает такими положительными свойствами, как оптимальное охлаждение двигателя и незначительный вес. Он находится на втором месте по количеству выпускаемых блоков цилиндров. Особенность конструкции из алюминия – установка гильз.

Сегодня для выполнения этой операции, в основном, применяют две технологии Locasil и Nicasil.

В первом случае запрессовываются гильзы из алюминий-кремниевого сплава во втором – наносится никелевое покрытие.

Вторая технология имеет существенный недостаток – если, к примеру, прогорает поршень, обрывается шатун или выходит из строя никелевое покрытие, то изделие отремонтировать не получится.

Также никосиловая технология не предусматривает расточку, приходится менять весь узел в сборе. Понятно, что в таком случае владельцу автомобиля приходится раскошелится на солидную сумму.

Электро-двигатель

Существуют машины, которые используют в качестве исходной энергии – электричество. Наиболее популярный и близкий к автомобилю вид транспорта, работающий на электричестве – это всем известный троллейбус.

Но полноценным автомобилем его не назовешь, поскольку двигаться троллейбус может только лишь вдоль натянутых проводов, от которых он запитывается электричеством.

Но вы наверняка слышали о машинах, которые называются электромобилями. Электромобили – это автомобили, в которых в качестве силового агрегата используется электродвигатель.

Электродвигатель, как вы понимаете, работает от электрической энергии, которую он получает, как правило, от аккумуляторных батарей.

Электромобили, по сравнению с автомобилями, использующими двигатели внутреннего сгорания, имеют массу преимуществ.

Они экологичны, практически бесшумны (что не всегда плюс), быстро набирают скорость, им не нужна коробка скоростей можно даже обойтись без трансмиссии, если поставить двигатели на каждое из колес. То есть такие автомобили могли бы быть намного дешевле, чем автомобили с ДВС, если бы стали массовыми.

Но есть два существенных момента, которые очень сильно ограничивают применение электродвигателей на современных автомобилях. До сих пор не придумали аккумуляторов, которые бы могли запасти в себе достаточное количество электрической энергии.

То есть запас хода электромобиля сегодня ограничен несколькими десятками километров. Если не включать фары, магнитолу, кондиционер, то можно и до сотни километров проехать, но все равно это очень мало. Примерно в 5-6 раз меньше, чем на одной заправке бензином. Впрочем, над этим разработчики постоянно работают и возможно, что когда вы читаете эти строки, уже существует электромобиль с запасом хода более 500 км.

Но даже малый запас хода был бы не так страшен, если бы не время, требуемое на перезарядку аккумуляторов. Если заправка бензином, дизтопливом или газом занимает 5-10 минут, то аккумуляторы придется заряжать часов 12, а то и сутки.

Поэтому, пока электромобили могут использоваться лишь для непродолжительных поездок по городу, после чего всю ночь на зарядке.

Характеристики

Ионная линза постоянно бомбардируется небольшим количеством вторичных ионов и разрушается или стирается, что уменьшает КПД двигателя и срок службы. Ионным двигателям требуется возможность эффективной и непрерывной работы в течении многих дет. Для уменьшения разрушения было использовано несколько методов. Самым достойным внимания было изменение различных видов топлива. Атомы ртути или цезия использовались в качестве топлива при испытаниях в 1960-х и 1970-х годах, но они прилипали к решеткам и разрушали их. С другой стороны, атомы ксенона – гораздо менее коррозионные, что сделало их отличным топливом практически для всех типов ионных двигателя. НАСА продемонстрировало непрерывную работу двигателя «NSTAR» в течение 16 000 часов (1,8 года), а продолжающиеся испытания показывают превышение этого срока вдвое. Электростатические ионные двигатели также достигли удельного импульса в 30-100 кН*с/кг, что превышает показатели большинства других типов ионных двигателей. Также они разогнали ионы до скоростей, достигающих 100 км/с.

Ионный двигатель с сеткой

В январе 2006 года Европейское космическое агентство совместно с Австралийским национальным университетом, заявили об успешных испытаниях улучшенного электростатического ионного двигателя – «Dual-Stage 4-Grid», достигший скорости в 210 км/с, что вчетверо превышало достигнутые ранее показатели, что позволяет достигнуть удельного импульса в четыре раза больше. У стандартных электростатическим ионных двигателей есть всего две решетки – высокого и низкого напряжения соответственно, обе из которых занимаются добычей ионов и ускорением корабля. Однако, когда разница разрядов между этими решетками достигает примерно 5 кВ, некоторые из частиц, полученных из камеры, сталкиваются с решеткой низкого напряжения, разрушают ее и ставят под угрозу долговечность двигателя. Это ограничение успешно преодолевается при использовании двух пар сеток. Первая пара работает при высоком напряжении, создавая разницу потенциалов между сетками на уровне 3 кВ. Эта пара сеток отвечает за извлечение заряженных частиц топлива из газовой камеры. Вторая пара, работающая при низком напряжении, генерирует электрическое поле, ускоряющее выходящие наружу частицы и обеспечивающее тягу. Среди других преимуществ нового типа двигателя – более компактный дизайн, что позволяет вырабатывать более сильную тягу, и меньший угол выхода шлейфа выходящих газов в 3 градуса – показатель, как сообщается, в пять раз меньший, чем достигнутый ранее. Это уменьшает объем топлива, нужный для коррекции положения аппарата, из-за меньших колебаний в направлении вектора двигателем.

Производство ионов

Принцип работы газового ионного источника, красным — катоды, синим — анод.

Два основных метода получения ионов:

  • контактная ионизация: топливо испаряется и циркулирует в металлической структуре, нагретой до высокой температуры. Контакт с металлом, который имеет высокую рабочую функцию, оторвет электроны от атомов газа.
  • ионизация путем генерации плазмы: источником HF или электрической дугой.

Затем ионы будут сфокусированы в форме луча с использованием первой серии электродов. Затем другая серия электродов или решетка будет ускорять их вне двигателя. Наконец, за нейтрализацию луча отвечает электронная эмиссионная система.

Откуда берутся ионы

Двигатели создают их, генерируя плазму внутри аппарата. Нейтральные атомы газа, например, ксенона, бомбардируются электронами. Эти столкновения высвобождают еще больше электронов, превращая их в положительно заряженные ионы. Эта плазменная смесь из электронов и положительно заряженных ионов имеет общий нейтральный заряд.

При этом электроны удерживаются в камере, что приводит к еще большей ионизации, в то время как положительные ионы откачиваются через специальную сетку. Когда они проходят через эту сетку, высокое напряжение ускоряет их до 90 км/с. Каждый вылетевший из сопла ион придает крошечное ускорение аппарату.

Вся система работает от солнечных батарей, поэтому нет необходимости в дополнительной системе питания или аккумуляторах, что значительно увеличивает полезную нагрузку аппарата.

Однако эти двигатели могут непрерывно работать в течение нескольких дней, недель и даже месяцев, ускоряясь и постепенно набирая скорость. У химических ракет, для сравнения, топливо закончилось бы за несколько минут. Поэтому если космический аппарат уже выведен из гравитационного поля планеты, ионный двигатель становится весьма эффективным.

Некоторые космические агентства уже использовали ионные двигатели в своих миссиях в космосе. И хотя разработки велись на протяжении десятилетий, применить их долгое время не решались из-за большого риска.

Как работает ионный двигатель

Принцип работы ионного двигателя

Такой двигатель является реактивным так же как и знакомый ракетный двигатель, только вместо сжигания топлива используется ионизация газа. А в остальном принцип тот же, принцип реактивного движения основанный на Третьем законе Ньютона. А если по-простому, то аппарат двигает вперед поток ионов выбрасываемых из двигателя.

А теперь подробнее о принципе работы ионного двигателя. В «камеру сгорания» подается инертный газ (обычно аргон или ксенон), при помощи потока электронов этот газ ионизируется. Далее электроны улавливаются специальными устройствами, а положительно заряженные ионы двигаются к решеткам с очень большой разницей потенциалов. Из-за разницы потенциалов ионы разгоняются и выбрасываются из сопла создавая реактивную тягу.

Ранее пойманные электроны (отрицательно заряженные, если вы уже забыли) выбрасываются в вдогонку и под углом к потоку ионов, чтобы нейтрализовать их заряд, иначе часть ионов могут притянутся к корпусу двигателя уменьшив его тягу. Принцип работы ионного двигателя на самом деле прост, но всегда есть какое-то «но»…

Достоинства и недостатки

Все довольно просто, но есть некоторые недостатки.

Ионный двигатель создает очень большой удельный импульс но очень маленькую тягу обусловленную массой выбрасываемых частиц. Это значит, что разогнать космический корабль он может, но ускорение будет небольшим и на его создание уйдет очень много времени.

Поэтому сейчас такие двигатели используются только в космосе, где нет сопротивления воздуха и на небольших объектах вроде спутников, либо для пространственной ориентации более крупных объектов.

Ионный двигатель в работе

Но в марте 2015 года на орбиту был запущен космолет X-37B, который должен испытать ионный двигатель на эффекте Холла. Такой двигатель работает по тому же принципу, что и обычный, за исключением того, что ускорение происходит благодаря эффекту Холла, что позволяет несколько увеличить его тягу и не использовать решетки для притяжения и разгона ионов.

В 2003 двигатель на эффекте Холла был впервые использован в качестве основного на автоматической станции SMART-1 весом в 370 кг европейского космического агенства, но сам двигатель был создан в московском КБ «Факел». Теперь ионный двигатель ждет испытание на намного более массивном X-37.

Главным достоинством ионного двигателя является время его работы. Такой двигатель может работать очень долго благодаря низкому потреблению газа и все время своей работы он будет разгонять космический аппарат. Например, двигатель NEXT (NASA’s Evolutionary Xenon Thruster) проработал в космосе рекордное время — 5,5 лет или 48 000 часов, использовав всего 870 кг ксенона, в случае стандартного химического двигателя потребовалось бы 10 тонн топлива.

Рекорд по скорости также принадлежит ионному двигателю. Аппарат Dawn запущенный Nasa для исследования карликовой планеты Цереры, разогнался до скорости 11,46 км/с без использования гравитационных маневров.

Судя по всему, именно у ионных двигателей наибольшие перспективы стать в будущем маршевыми двигателями для межпланетных полетов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector