Гравитация на марсе

Особенности силы тяжести

Марс значительно меньше в отличие от Земли, именно размером обусловлена меньшая сила тяжести на нём. Ньютон использовал закон всемирного тяготения, чтобы описать, как это работает на Земле. Но уже другим учёным удалось объяснить, какая сила тяжести на Марсе.

Эйнштейн, в свою очередь, сообщил, что гравитационная сила представляет собой не что иное, как искривление, создаваемое за счёт массы тела.

Квантовые физики при этом предложили использование теоретической частицы, получившей название «гравитон». Как они считают, именно за счёт неё происходит притяжение, но данный феномен до сих пор остаётся непонятным.

Как мы будем дышать на Марсе?

Привлекательность Марса осложняется тем, что воздух там на 96% состоит из углекислого газа. Если не решить вопрос с выработкой пригодного для жизни кислорода, любые идеи о колонизации зайдут в тупик. Один из возможных выходов — цианобактерии. Они поглощают углекислый газ и превращают его в кислород. Цианобактерии действуют по принципу фотосинтеза, но в отличие от растений им не нужен солнечный свет. Ученые обнаружили, что бактерии справляются со своей задачей даже в самых глубоких впадинах океана.

Если перевести цианобактерии на Марс, есть вероятность, что они смогут там прижиться и космонавтам будет чем дышать. Космические агентства и частные компании уже думают о возможной реализации такого проекта.

Если отойти от этой идеи, можно использовать уже испробованный технический способ добычи кислорода. На МКС давно используют электролиз воды. При таком подходе вода расщепляется на кислород и водород. Кислород оставляют для создания пригодной для жизни атмосферы, а водород выбрасывают в космос. Но при колонизации Марса возникнет проблема с водой: ее будет недостаточно для постоянного обеспечения планеты воздухом.

Ученые нашли возможный выход из ситуации. Они обнаружили, что при столкновении углекислого газа с золотой фольгой на высокой скорости атомы кислорода отделяются от углекислого газа. NASA планирует отправить на планету марсоход MOXIE 2020, который проверит, работает ли там подобная система на и возможен ли подобный подход для успешной колонизации этой планеты.

Инженерные и научные приложения

Ареоид

Areoid является планетарным геоид , что представляет собой гравитационную и вращательную эквипотенциальную фигуру Марса, аналогичную концепции геоида ( « уровня моря ») на Земле. Это было установлено в качестве системы отсчета для разработки MOLA Mission Experiment Gridded Data Records (MEGDR), которая представляет собой глобальную топографическую модель. Модель топографии важна для картирования геоморфологических особенностей и понимания различных процессов на Марсе.

Для получения ареоида требуются две части работ. Во-первых, поскольку данные о гравитации важны для определения положения центра масс планеты, на которое в значительной степени влияет распределение массы внутри, необходимы данные радиосопровождения космических аппаратов. В основном это было сделано Mars Global Surveyor (MGS). Затем прибор MOLA 2 на борту MGS, который работает на орбите возвышения 400 км, мог бы измерять дальность (расстояние) между космическим кораблем и поверхностью земли путем подсчета времени прохождения импульса от прибора туда и обратно. Комбинация этих двух работ позволяет построить ареоид, а также MEGDR. На основании вышеизложенного, радиус ареоида был принят за средний радиус планеты на экваторе, равный 3396 км.

Посадка на поверхность

Поскольку между Марсом и Землей большое расстояние, непосредственное управление посадочным модулем практически невозможно, а посадка в значительной степени зависит от его автономной системы. Было признано, что во избежание неудач точное понимание гравитационного поля Марса необходимо для проектов посадки, так что компенсирующие факторы и неопределенности гравитационных эффектов могут быть сведены к минимуму, обеспечивая плавный процесс посадки. Первый в истории искусственный объект, приземлившийся на Марс, посадочный модуль » Марс-2″ разбился по неизвестной причине. Поскольку поверхностная среда Марса сложна и состоит из изменяющихся в поперечном направлении морфологических структур, во избежание каменной опасности прогрессу приземления следует дополнительно способствовать за счет использования LIDAR на месте для определения точного положения приземления и других защитных мер.

Почему на Марсе по другому

Тяготение Марса относительно Земли выражается в пропорциональной зависимости следующих характеристик:

  • массы;
  • расстояния до центра планеты;
  • размера;
  • плотности.

Земля, имеющая превосходство по всем показателям, оказывает большую силу притяжения, которая ослабляется лишь по мере удаления планет друг от друга. Эти же параметры определяют и воздействие на предметы, находящиеся на поверхности каждой из них.

Несмотря на отдельные совпадения и частичное сходство, проявляющиеся в наличии полярных шапок, примерно одинаковом наклоне оси вращения, климатических изменениях, различия между планетами гораздо существенней.


Сила тяжести Марса относительно Земли. Credit: Theguestion

Во что мы будем одеваться?

Система производства кислорода не избавит людей от необходимости периодически носить скафандры. Даже в случае, если система добычи кислорода окажется удачной, на планете останутся территории, непригодные для дыхания. Плюс к этому на Марсе происходят резкие перепады температур: от -157°С до +121°С. Без специальной одежды человек не сможет выжить в подобных условиях.

Для прогулок по Марсу NASA разработала два скафандра нового поколения, способных работать в автономном режиме до восьми часов. Они помогут защитить космонавтов от непригодных для жизни температур и радиации. Дизайнеры проекта обещают, что новые скафандры не будут сковывать движения: в них будет удобно ходить и даже прыгать. Изначально костюмы создавались для высадки человека на Луну, при добавлении небольшого количества модификаций они подойдут и для будущих жителей Марса.

Презентация марсианских скафандров NASA

От Циолковского до очарованности космосом

В научном дискурсе проблема межпланетных полетов человека впервые была поднята в работах ученого Константина Циолковского, математика Якова Перельмана и инженера Владимира Рюмина в самом начале прошлого века. Первые же эксперименты в этой области принадлежат советскому изобретателю Фридриху Цандеру, который, основываясь на теоретических расчетах своих предшественников, подготовил первый проект полета человека на другую планету.

Согласно подсчетам Цандера, для путешествия двух-трех космонавтов на Марс потребовался бы корабль массой в 400 тонн, конструкция которого должна была представлять собой комбинацию аэроплана и ракеты — на случай, если полет придется осуществлять в другой по своей плотности атмосфере.

Для обслуживания космонавтов и кораблей ученый предлагал использовать околопланетные орбитальные станции. К слову, Цандер впервые сумел экспериментально проверить возможность использования оранжерей, которые планировал разместить на борту корабля для выращивания питания космонавтам.

Впоследствии на фундаменте этих исследований была организована «Группа изучения реак­тивного движения» (ГИРД), которая в 1933 году вошла в Реактивный научно-исследова­тельский институт (РНИИ), главным инженером которого стал легендарный Сергей Королев. Осенью того же года произошел первый запуск советской ракеты «ГИРД-Х», которая, взлетев вертикально на высоту около 80 метров, разбилась. До начала Второй мировой войны ее продолжали улучшать, обкатывая на наземных и летных испытаниях.

Вместе с тем, на Западе уже в 1952 году германо-американский конструктор Вернер фон Браун опубликовал свой проект пилотируемого полета на Марс. В книге Das Marsprojekt он предложил отправить на Красную планету десять межпланетных кораблей — семь с людьми (по десять человек на каждом) и три с грузом. Фон Браун спроектировал и посадочный модуль, напоминающий самолет. Предполагалось, что космонавты смогут приземлиться на поверхность Марса как на самолете, после чего демонтируют крылья так, чтобы модуль вновь принял облик ракеты.

Вернер фон Браун (слева) и Джон Ф. Кеннеди, 1963 год

(Фото: wikipedia.org)

Конечно, первые проекты пилотируемого полета человека на другую планету были не реализуемыми в принципе. Например, сегодня мы знаем, что из-за низкой температуры (в среднем минус 62 градуса по Цельсию) и предельно разреженной атмосферы (примерно в 100 раз менее плотной, чем на Земле) совершить посадку на Марс, используя крылья самолета, невозможно.

Эти проекты скорее определили общий вектор развития, поставили новые задачи перед инженерами и превратили космическую отрасль едва ли не в самое культовое явление во всем цивилизованном мире.

Именно на пике этой всеобщей очарованности космосом, к концу 50-х — началу 60-х годов, в СССР и США сумели, наконец, сконструировать первые реальные аппараты, проложившие первые тропинки к Марсу.

Минусы низкой гравитации

Как можно заметить, опираясь на материал, изложенный выше, сила тяжести на Марсе является более низкой в сравнении с его «соседкой» — Землёй

Известно, что в таких условиях среднестатистический человек страдает от потери костной массы, в связи с этим в процессе освоения планеты стоит принимать во внимание продолжительное влияние невысокой силы тяжести на тело и организовывать научные исследования. Преодоление этого аспекта может дать хороший старт для освоения человечеством других планет

Таким образом, несмотря на сходства, планеты Земля и Марс различны, в том числе и по гравитации.

Причины радиации на Марсе

Марс, к своему несчастью, лишен привычной для Земли магнитосферы. Хотя ранее он все же испытывал конвекционные токи в ядре, что намекало на функционирование динамо. Но 4.2 млрд. лет из-за крупного удара или стремительного охлаждения все прекратилось.

Художественное видение солнечного шторма, врезающегося в планету и вырывающего ионы из верхнего атмосферного слоя

В итоге, следующие 500 млн. лет марсианская атмосфера медленно удалялась в пространство. Из-за этого поверхность получала огромные радиоактивные порции. К тому же остаются отметки и после случайных солнечных вспышек.

Определение земной гравитации

Гравитация – естественная сила, которая заставляет массивные вещи притягиваться, вроде астероидов, планет, скоплений и т.д. Чем больше масса, тем выше гравитационный показатель. Также он зависит от удаленности (уменьшается с отдалением). Можете посмотреть как выглядит сила гравитации Земли на рисунке.

Художественная интерпретация воздействия земной гравитации на пространство-время

Среди четырех фундаментальных сил гравитация выступает самой слабой. Поэтому ей отведена роль воздействия на наименьшие частички – субатомные. А вот в более крупных масштабах она влияет на взаимодействие материи и эволюционный процесс раннего пространства.

Именно гравитация несет ответственность за скопление материи и формирование газового облака, из которого появились первые звезды. Далее она притягивала осколки, создавая планеты и спутники.

Магнитное поле планеты

Одним из непреодолимых пока препятствий становится отсутствие на Марсе планетарной магнитосферы. Остаточные явления магнетизма присутствуют и колеблются, по данным российских исследовательских станций, от 60 гамм на экваторе до 120 — на полюсах, но это более чем в 500 раз меньше напряженности земного аналога.

Вращение земного ядра создает в расплавленной магме конвекционные токи, которые генерируют магнитную напряженность (по принципу динамо-машины). На красной планете этот механизм не работает, что сначала привело к исчезновению почти всей марсианской атмосферы, а сейчас проявляется в постоянном уровне радиации в 220 рад в день на поверхности.

Это на 10% больше нормы, допустимой для космонавтов на МКС, и для возможных колонистов грозит необратимыми последствиями:

  • повышенным риском онкологических заболеваний;
  • изменениями на генетическом уровне;
  • мутациями в последующих поколениях;
  • острой лучевой болезнью и смертью.

https://youtube.com/watch?v=YqFkArxMXlo

Тем не менее существуют явные признаки, что когда-то магнитное поле Марса существовало и функционировало, но процесс этот прекратился в силу неизвестных обстоятельств около 3,2 млрд лет назад.

Почему так сложно долететь до Марса?

Несмотря на многочисленные программы по изучению Марса, которые проводятся уже более 60 лет, полет на планету остается опасным, сложным и непредсказуемым. Почему?

  • Одним из самых критичных этапов является запуск. До сих пор возникают проблемы с выходом за околоземную орбиту. В 2012 году у российской межпланетной станции «Фобос-Грунт» отказал бортовой компьютер, и аппарат сгорел в атмосфере, не выйдя за пределы Земли;
  • Другая проблема — составление траектории полета. Расстояние между Землей и Марсом — 55 млн км, и современные космические аппараты вполне могут его преодолеть. Однако из-за разной скорости и траектории движения планет на пути реальная дистанция может достигать 450 млн км, а иногда и больше. При этом во время полета курс тоже может корректироваться. Если что-то пойдет не так, аппарат может улететь совсем в другую сторону или вовсе исчезнуть в космосе. Так произошло с японским космическим аппаратом «Нодзоми», отправленным в 1998 году. Ему не хватило мощности, чтобы сразу долететь до Марса, поэтому пришлось сделать несколько гравитационных маневров. По прошествии пяти лет, в 2003 году, «Нодзоми» прошел на высоте 1000 км от Марса, не выйдя на его орбиту;
  • Если выйти на орбиту удалось, это еще не значит, что посадка пройдет успешно. Из-за большой задержки радиосигналов во времени — около 12 минут — дистанционное управление посадкой будет недоступно. Это значит, что необходим автономный бортовой компьютер, который «приземлит» аппарат самостоятельно. Посадка, как правило, занимает шесть-семь минут: их называют «семь минут ужаса», потому что именно в этот момент крушение ровера может привести к провалу всей миссии.

Посадка марсохода Curiosity в 2012 году

При приземлении марсохода Curiosity использовалась новая технология посадки, так называемый «Небесный кран», который за счет реактивных двигателей мягко опускает аппарат на поверхность планеты.

Технология «Небесный кран»

Что касается высадки людей на Марсе, то тут проблем еще больше. Во-первых, время в пути составляет около девяти месяцев только в одну сторону. Это значит, что космонавтам придется сидеть в замкнутом пространстве без гравитации с прерывающейся связью с Землей. Для этого нужна особая физическая и психологическая подготовка. Во-вторых, пока нет достаточно мощной ракеты, чтобы отправить на Марс хотя бы одного человека. В-третьих, на «красной планете» высокий уровень радиации, который может привести к болезни Паркинсона, онкологическим заболеваниям, кратковременной потери памяти и прочим болезням. Авторы книги «Пилотируемая экспедиция на Марс» приводят следующий список недугов, которые могут возникнуть у космонавтов в процессе полета и по приземлении: космическая болезнь движения, заложенность носовых пазух, запоры, головная боль, раздражение кожи и ее сухость, абсцессы, небольшие ссадины и ушибы, воспаление роговицы или ее ссадины, инфекция верхних дыхательных путей, бессонница, отит.

Футурология

Колонизация Марса: почему до сих пор ничего не вышло

NASA уже разрабатывает специальные костюмы, которые обеспечивают атмосферное давление не воздухом, как раньше, а сдавливанием кожи материалами, плотно прилегающими к телу. Такие скафандры весят вдвое меньше обычных и обладают высокой мобильностью.

В декабре 2020-го на вручении премии Axel Springer Award, которая присуждается выдающимся инноваторам, Илон Маск заявил, что через шесть лет у людей появится возможность высадиться на Марсе.

Кроме Илона Маска о колонизации Марса мечтает и NASA. В 2015 году агентство представило программу путешествия на «красную планету». Ее итогом должна стать высадка первого человека на Марс в 2030-х годах. Однако до этого предстоит проделать много работы: изучить поверхность Марса, разработать специальные костюмы, спроектировать ракеты и станции, в которых будет возможна безопасная посадка и многое другое.

Земная гравитация

В нашем случае она формируется из массы и плотности – 5.9237 х 1024 кг и 5.514 г/см3. Получается, что гравитация Земли равна 9.8 м/с2. Однако эта отметка способна меняться в зависимости от вашего расположения на поверхности. На экваториальной линии – 9.789 м/с2, а на полюсах – 9.832 м/с2.

Международная космическая станция на земной орбите

Также гравитация меняется, основываясь составе небесного тела. Более высокие концентрации материала способны изменить силу. Но эта сумма слишком крошечная, чтобы ее отметить. Вы могли знать, что гравитация иная на большой высоте. Если вы окажитесь на вершине Эвереста, то там сила на 0.28% меньше. На МКС – 90% поверхностной. Но станция пребывает в эффекте свободного падения, поэтому все внутри падает, и вы не ощущаете силы.

Именно гравитация ответственна за то, что скорость побега составляет 11.186 км/ч. Из-за разности в гравитационных показателях с другими объектами приходится готовить астронавтов к сложным условиям и создавать специальные тренажеры и защиту.

Длительное пребывание в микрогравитации негативно сказывается на организме, но НАСА стараются исправить это положение, чтобы без проблем построить марсианские и лунные колонии.

Мы должны быть благодарны за гравитацию Земли, но это и наша ноша, усложняющая процесс освоения чужих миров. Мы прикованы к дому и чувствуем себя здесь прекрасно, но вынуждены ограничивать себя лишь этим шаром.

  • Интересные факты о планете Земля;
  • Как погибнет Земля;
  • Как закончится жизнь на Земле?
  • Как Земля защищает нас от космоса?
  • Самая похожая на  Землю планета
  • Как появилась вода на Земле?
  • Кто открыл Землю?
  • Разрушение Земли
  • Смогут ли люди передвинуть Землю?
  • Как сформировалась Земля

Строение Земли

  • Сколько спутников у Земли;
  • Земля круглая?
  • Почему Земля круглая?
  • Есть ли у Земли кольца?
  • Насколько большая Земля?
  • Возраст Земли;
  • Масса Земли;
  • Земная гравитация
  • Сколько весит Земля?
  • Сколько весит Земля? Сравнение;
  • Размер Земли
  • Диаметр Земли;
  • Окружность Земли
  • Плотность Земли
  • Магнитное поле Земли;
  • Геомагнитный разворот

Поверхность Земли

  • Поверхность Земли;
  • Что такое поверхностная земная зона?
  • Терминатор Земли
  • Сколько километров займет путь вокруг Земли?
  • Эффект Альбедо
  • Альбедо Земли
  • Гравитация Земли;
  • Температура на Земле;

Положение и движение Земли

  • Земля, Солнце и Луна;
  • Что приводит к смене дня и ночи?
  • Циклы Миланковича
  • Солнечный день
  • Как долго солнечный свет добирается к Земле?
  • Вращение Земли вокруг Солнца;
  • Что такое земное вращение?
  • Почему Земля вращается?
  • Что произойдет, если Земля перестанет вращаться?
  • Почему Земля наклонена?
  • Северный магнитный полюс
  • Орбита Земли;
  • Прецессии равноденствий
  • Расстояние от Земли до Солнца;
  • Ближайшая к Земле звезда;
  • Ближайшая к Земле планета;
  • Сколько длится день на Земле;
  • Зимнее солнцестояние
  • Сколько длится земной год;
  • Скорость вращения Земли;
  • Ось вращения Земли;
  • Наклон Земли;

Как может измениться наше тело?

О том, что будущим колонистам Марса придется изменить тело и ум, говорил также польский ученый из Университета информационных технологий и менеджмента Конрад Шоцик. Он даже допускал вероятность изменения органов чувств человека с помощью новейших электронных средств и медикаментов, уменьшающих эмоциональные реакции в момент кризиса.

Американские астронавты во время высадки на Луну демонстрировали прыжки и признавались, что ходить по-земному им неудобно. То же самое может произойти с «марсианами». Пониженная гравитация приводит к изменениям в костной структуре, свидетельствуют ученые, наблюдавшие за космонавтами. За два-три года на Марсе кости человека будут «таять» со скоростью 2% в месяц. Если организм попробует адаптироваться, он может начать уплотнять кости и тогда люди превратятся в крепких коротышек.

Как изменится человек, чтобы приспособиться к марсианским условиям? Возможно, его глаза станут узкими, руки удлинятся, кожа покраснеет, тело покроется шерстью, большой палец на ноге отодвинется в сторону для лучшей устойчивости, фигура станет более коренастой, а кости — более плотными.

Палеоантрополог Мэтью Скиннер из Кентского университета посулил «марсианам» удлинение рук: в условиях ослабленной гравитации людям нужно будет заново учиться хватать окружающее предметы, и ради этой задачи кости будут удлиняться. Одновременно уйдет в сторону и большой палец на ноге для придания телу устойчивости. В итоге анатомически люди Марса станут похожими на земных орангутангов.

Дозы радиоактивного облучения на Марсе в шесть раз превышают максимально разрешенные для сотрудников земных ядерных объектов. Радиация повреждает ДНК и вызывает рак. Но некоторые ученые полагают, что человек сможет выработать некоторую защиту с помощью пигмента, так что все «марсиане» станут чернокожими. А может быть, оранжевыми, как морковка. Проверить эти теории не представляется возможным, так как на Земле и в доступном космосе нет похожих на Марс условий и их невозможно воссоздать искусственно.

Как можно добиться необходимых изменений в физиологии человека? Некоторые идеи есть у специалистов NASA. В 2017 году главный технолог НАСА Дуглас Терьер, выступая на конференции в рамках Лондонского саммита инноваций Codex, предложил внести изменения в гены членов экипажа марсианской экспедиции. Но есть одна загвоздка: генное редактирование клеток человека нигде в мире не разрешено.

Сравнение с гравитацией Земли

Имея высокие гравитационные показатели, обладая достаточно плотной и высокой атмосферой, защищенная магнитным полем Земля создает для жизни организмов всех уровней оптимальные условия. Тогда как на Марсе недостаточная сила тяготения не в состоянии удержать на поверхности ни одной жидкости. Вода существует там только в твердом или газообразном состоянии.

Разреженная атмосфера, засушливый и холодный климат (средние температуры колеблются от -143ºC зимой до 30ºC летом), низкая гравитация и магнитное поле не допускают возможности присутствия на планете сложных биоструктур.

Исключение могут составлять бактерии и микроорганизмы, приспособляемость которых к самым экстремальным условиям доказана на практике. Они выживают в открытом космосе, при сверхнизких температурах и в радиоактивной воде атомных реакторов. Но для высших форм жизни условия Марса пока неприемлемы.

Ход занятия:

Iчасть: Вводная (информационно-познавательная)

Воспитатель: ребята, я вас всех рада видеть. Теперь давайте поздороваемся друг с другом.

Приветствие сопровождается движениями,дети сидят на ковре в кругу:

Здравствуй, Небо! Руки поднять вверх

Здравствуй, Солнце! Руками над головой описать большой круг

Здравствуй, Земля! Плавно опустить руки на ковер

Здравствуй, планета Земля! Описать большой круг над головой

Здравствуй, наша большая семья!

Все ребята берутся за руки и поднимают их вверх.

— А сейчас я вам расскажу одну интересную историю. Наша красавица планета Земля родилась много миллионов лет назад. Сначала она представляла собой кипящую смесь из камней и газа. В течении многих лет Земля остывала и остывала. Шли проливные дожди, которые тоже остужали жар Земли. Так образовались моря. В те далёкие времена никто из живых существ ещё не населял Землю. Постепенно климат на Земле становился теплее, и тогда стали появляться живые организмы. Земля представляет собой твёрдый огромный ар, который вращается в космическом пространстве. Для того, что бы мы тоже могли увидеть нашу Землю со стороны, ученые создали маленькую модель нашей планеты. Угадайте, как она называется? (глобус)

— Всё верно. Глобус, как мы с вами узнали ещё на первом занятии, это модель нашего мира в маленькой форме.

-Как вы видите, Земля имеет форму круга. Но почему тогда все реки и моря не выливаются? Что держит их на поверхности и заставляет течь? Есть видимо какая-то невидимая сила, которая притягивает их.

Она держит и нас с вами тоже. Попытайтесь прыгнуть и зависнуть в воздухе. Человек не может летать. Он всё равно притягивается к земле.

А притягивает ли эта сила предметы? Подкиньте любой предмет?

Что случилось? Они упали обратно на пол. А если взять самый лёгкий предмет, например лист бумаги или пёрышко, попробуйте подкинуть пёрышко? Оно всё равно плавно опускается вниз.

Сила, которая притягивает к Земле как тяжёлые, так и лёгкие предметы, называется силой тяготения.

Что бы могло случиться, если бы не было силы тяготения? (ответы детей)

Как вы думаете, почему каждая планета движется только по своей орбите и не перемещается на другие? (Ответы детей.)

Эта сила держит все планеты строго на своей орбите, и вращаются они вокруг солнца.

Физминутка:

Поработали, ребятки,

А теперь — все на зарядку!

Мы сейчас все дружно встанем,

Отдохнем: мы на привале.

Влево, вправо повернитесь,

Наклонитесь, поднимитесь.

Руки вверх и руки вбок,

И на месте прыг да скок!

А теперь бежим вприпрыжку,

Молодцы вы, ребятишки!

Замедляем, дети, шаг,

И на месте стой! Вот так!

А теперь мы сядем дружно,

Нам еще работать нужно.

Воспитатель: А сейчас ребята мы с вами узнаем ещё много интересного о силе тяготения. Давайте снова поиграем с вами в исследователей.

IIчасть: Практическая (Опытно-экспериментальная)

Опыт №1 «Сила тяготения»

Перед нами стоят стаканы с песком и водой. Давайте проверим, что притянется к земле быстрее. Вода, песок или они оба быстро достигнут земли. При наклоне стакана влево или вправо вода выливается, а песок высыпается. То же самое происходит с водой и песком, если стакан с содержимым перевернуть вверх дном.

Вывод: все предметы стремятся на землю и жидкости, и твёрдые тела

Опыт №2 «Невесомость»

Ребята космонавты, которые отправляются в долгие космические путешествия, отдаляясь от Земли начинают парить в корабле, на них перестаёт действовать сила притяжения. Это называется состояние невесомости. Давайте подпрыгнем с вами высоко — высоко, и попробуем задержаться в верхней точке. Получилось?

Вывод: сила тяготения действует на планете, и невесомость достигается только в космосе.

Итог занятия (рефлексия)

Отлично ребята, сегодня мы с вами узнали, что Земля – это большой магнит. Она притягивает к себе все предметы и нас самих. А теперь скажите, как называется эта волшебная сила? (ответы детей)

Что нового вы сегодня для себя узнали?

Почему планеты вращаются по своим орбитам и не падают?

Почему «там» всё по-другому?

По той простой причине, что гравитация на Марсе традиционно выражается в прямой и непосредственной зависимости между определёнными характеристиками:

  • масса (вес);
  • дистанция до центральной части планеты;
  • уровень плотности;
  • размерные показатели.

Для Земли характерно превосходство по всем этим параметрам, и оно серьёзно влияет на силу притяжения, ослабление которой происходит исключительно по мере удаления объектов друг от друга. Эти же показатели способствуют определению влияния на предметы, которые находятся на поверхностях. Несмотря на то, что учёные обнаружили определённые сходства, различия между планетарными свойствами вполне серьёзные.

Орбита и вращение Марса

У каждой планеты Солнечной системы есть определенный орбитальный период (определяющий продолжительность года) и период вращения (определяющий продолжительность суток). Давайте посмотрим, с какой скоростью Марс движется вокруг Солнца и вращается вокруг своей оси.

Сколько длится год на Марсе?

Так как Марс находится дальше от Солнца, чем Земля, Красной планете требуется больше времени, чтобы совершить один оборот вокруг Солнца. Год на Марсе длится примерно 687 земных дней или 1,88 земного года.

Сколько длится день на Марсе?

Марс вращается вокруг своей оси примерно с той же скоростью, что и Земля. Из-за этого продолжительность суток на этих двух планетах почти одинаковая. Один марсианский день (называемый “сол”) длится 24 часа 39 минут, что всего на 39 минут дольше земных суток.

Есть ли времена года на Марсе?

Как вы, вероятно, знаете, смена времен года на планете происходит из-за наклона оси ее вращения. Наклон оси вращения Марса весьма схож с земным: Красная планета наклонена под углом 25,2°, а Земля – под углом 23,5°. По этой причине на Марсе есть четыре времени года: весна, лето, осень и зима. Однако каждый сезон на Марсе длится примерно в два раза дольше, чем на Земле. Так происходит из-за того, что Марсу требуется почти два земных года, чтобы совершить один оборот вокруг Солнца.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector