Сколько материи во вселенной на самом деле?

Возникнуть и не пропасть

Мы уже выяснили, что пустое пространство, которое мы сейчас наблюдаем во Вселенной, не такое уж пустое: в нем постоянно что-то бурлит, возникают и исчезают виртуальные частицы. Но откуда взялось то ничто, из которого появляются эти частицы, откуда взялось само пространство? Оказывается, при совместном действии квантовой механики и гравитации могут появляться не только частицы в пространстве, но и само пространство.

Ранее мы выяснили, что спонтанно появиться из ничего может только Вселенная, у которой общая энергия равна нулю, а это закрытая Вселенная. А еще раньше — что наша Вселенная плоская. Возникает противоречие.

Представьте себе воздушный шарик: если надуть его очень сильно, его поверхность будет казаться плоской, как кажется плоской круглая Земля (особенно если наблюдать ее где-нибудь в тундре). Если Вселенная с первых мгновений своего существования будет очень быстро расширяться, с ней произойдет то же самое — она возникнет как закрытая, а через 14 миллиардов лет станет плоской. Это резкое расширение — инфляция — описывается инфляционной моделью, которая была предложена в 1981 году физиком Аланом Гутом. Вот она на графике:

Но как доказать, что инфляция действительно имела место?

Еще в 1916 году Эйнштейн пришел к выводу, что, перемещаясь в пространстве, мы создаем гравитационные волны, так называемую рябь пространства-времени. Каждый раз, когда я двигаю рукой, появляются гравитационные волны, распространяющиеся со скоростью света. Но рябь настолько незначительна, что мы ее не замечаем. В обсерваториях в Вашингтоне и Луизиане (лазерно-интерферометрических гравитационно-волновых обсерваториях LIGO. — Прим. T&P) есть специальные детекторы, позволяющие улавливать гравитационные волны. Впервые это удалось сделать в сентябре 2015 года, когда произошло слияние двух черных дыр. За это открытие в 2017 году ученые получили Нобелевскую премию по физике.

Но это значит, что такое событие, как инфляция, также должно было породить гравитационные волны, и, если мы их обнаружим, мы подтвердим и правильность инфляционной модели (их поиском занимаются ученые в рамках серии экспериментов BICEP2. — Прим. T&P). А это будет значить, что наша Вселенная действительно могла быть произведена из ничего.

Если мы действительно находимся во Вселенной, расширяющейся с ускорением, то объекты, которые мы сейчас видим, вскоре будут находиться от нас на огромном расстоянии.

Мы еще не доказали, что это так, но это очень вероятно. И мне нравится эта вероятность: каждый раз, когда можно избавиться от божественного вмешательства и объяснить все с точки зрения физики, мы делаем шаг вперед. Помимо нашей Вселенной, могут существовать или прямо сейчас создаваться и другие, где действуют другие законы. Мы, люди, крайне неважная часть Вселенной, мы шум, загрязнение на ее фоне. Если вам это не нравится, возможно, вас утешит высказывание Эйнштейна:

Вселенная была создана не для нас, она была просто создана. Вселенной на нас наплевать. Мы сами наполняем нашу жизнь значением и смыслом.

Компьютерные модели Вселенной

Попытки сгенерировать компьютерную модель Вселенной, которая рассказывала бы ее эволюцию за более чем 13 миллиардов лет (то есть с момента Большого взрыва) принимались неоднократно. Так, еще в 2014 году в ходе работы, опубликованной в журнале Nature, исследователи провели численное моделирование формирования космической структуры, воспроизведя как крупномасштабные, так и мелкомасштабные особенности репрезентативного объема Вселенной с начала ее истории до наших дней.

Работа отражает как крупномасштабное распределение барионной материи во Вселенной, так и изменение с течением времени его свойств в конкретных галактических системах. Напомним, что барионной материей ученые называют материю, состоящую из барионов (нейтронов, протонов) и электронов.

А ври на изображении ниже можно увидеть результат работы исследователей из Нью-йоркского института Flatiron и Массачусетского технологического института (MIT). Им удалось разработать и запрограммировать новую модель моделирования Вселенной, получившую название Illustris: Следующее поколение, или Illustris TNG.

Перед вами компьютерная модель Вселенной, которая может похвастаться невиданными ранее уровнями детализации о силах, действующих во Вселенной.

До 2021 года эта модель являлась самой продвинутой симуляцией Вселенной в своем роде. Детализация и масштаб моделирования позволяют изучать, как формируются, развиваются и растут галактики в тандеме с их активностью по звездообразованию.

Отображение того, как развиваются галактики в моделировании, дает представление о том, какой могла быть наша собственная галактика Млечный Путь, когда сформировалась Земля, и как наша галактика может измениться в будущем.

Что такое космос и каковы его размеры

Рассказывая про размеры Вселенной, нельзя не упомянуть про понятие «космос». Под этим термином понимают часть вселенских просторов, заполненную пустотой, лежащую за пределами атмосфер и оболочек небесных тел. Космос не пустой или полый. Он заполнен межзвездным веществом, состоящим из молекул водорода, кислорода, а также ионизирующего и электромагнитного излучения. Кроме того, присутствует темная материя, о которой уже несколько веков спорят ученые. Многие из них выдвигают гипотезу о том, что эта скрытая масса — связующее звено космического пространства.

Современные астрономы, принимая за точку отсчета нашу планету, различают:

  • Ближний космос. Для человека он начинается на высоте порядка 19 километров. Это линия Армстронга, где происходит закипание воды при температуре человеческого тела. У человека, находящегося на этой высоте без скафандра, начинает закипать слюна и слезы. Высота всего в 100 километров считается международным официальным рубежом, после которого начинается космическое пространство.
  • Околоземный космос – считается таковым до высоты около 260 тысяч километров. Это высота, до которой сила притяжения Земли превосходит притяжение Солнца. В диапазоне этих высот совершают орбитальные полеты наши космонавты и летают различные спутники.
  • Межпланетная область. На этих высотах, а точнее удалениях от Земли совершает свой полет вокруг нашей планеты ее естественный спутник –Луна. На эти расстояния летали только автоматические космические станции и астронавты НАСА при высадке на Луну в 1970 году.
  • Межзвездное пространство – удаление от Земли меряется уже в миллиардах километров.
  • Межгалактическое пространство, где величины удаления составляют около 5 квинтиллионов километров. Все это ничтожно учитывая размер мироздания.

В поисках других миров

Удивительно, но сегодня существует целый каталог экзопланет, что вращаются вокруг других звезд. Буквально пару дней назад эксперты NASA добавили 301 новую планету к уже имеющимся 4 575. Согласитесь, внушительная цифра, а ведь кандидатов в это гордое звание только официально насчитывается почти восемь тысяч!

Согласно каталогу NASA, учеными было просмотрено в общей сложности три тысячи планетарных систем. В ближайшие годы, как ожидается, каталог значительно пополнится, ведь инструменты, с помощью которых мы изучаем космос, становятся все лучше. Так, недавно мы рассказывали о трех новых телескопах, которые, судя по всему, навсегда изменят астрономию, рекомендую к прочтению.

Ученым известно немало змееподобных планет, одна из них – Kepler62

Теперь остановимся на секунду и сделаем предварительные выводы: может ли разумная жизнь находиться на одной из 4 757 планет? Может быть да, может быть нет. Мы этого не знаем. Но чтобы хоть немного приблизиться к истине, из четырех с половиной тысяч экзопланет отберем те, которые подходят под звание планет земного типа и расположились в зоне обитаемости.

Чтобы сузить «круг подозреваемых» еще больше, из уже отобранных экзопланет земного типа отберем те, что находятся на расстоянии не дальше чем 50 световых лет от Солнечной системы. Причина такого отбора ясна – чем ближе к нам находится небесное тело, тем больше информации о нем мы можем собрать.

Список планет земного типа

Путем нехитрого отбора получаем список из 11 экзопланет-кандидатов, на поверхности которых может быть жизнь и, если повезет, разумная.

Исследователи полагают, что эти планеты имеют сходный с Землей состав и относятся к планетам каменистого типа (к ним относится Земля, Меркурий, Венера и Марс). И все же, на сегодняшний день нельзя утверждать, что все эти планеты – землеподобные. Установлено лишь, что их можно отнести к этому типу.

Но время от времени появляются хорошие новости. Например, в феврале прошлого года астрономы проанализировали все доступные параметры экзопланеты K2-18b и пришли к выводу, что на ней могут быть условия для существования жизни земного типа. Ознакомиться с текстом научной работы можно в журнале Astrophysical Journal Letters.

Экзопланета K2-18b по мнению ученых может быть пригодна для жизни. А может, на нее уже есть жизнь, кто знает

Вот только в наш список эта экзопланета не входит, так как находится на расстоянии около 124 световых лет от Земли. Таким образом, полученный нами список все время будет пополняться, а критерии для отбора изменяться.

Масштабы Вселенной

Чтобы хотя бы немного приблизиться к ответу на вопрос, каковы размеры Вселенной, необходимо оценить масштабы отдельных ее частей. Для человека обогнуть земной шар задача сложная, но вполне выполнимая. А теперь представьте, что наша планета по сравнению с Сатурном, как монетка в сравнении с баскетбольным мячом. А по отношению к Солнцу Земля вообще выглядит как маленькое зернышко.

Вся Солнечная система также не обладает значительной протяженностью в масштабе Вселенной. Если рассматривать пределом системы границу гелиосферы, ее протяженность составляет около 120 астрономических единиц. При этом за одну а.е. принимают расстояние, равное ~ 150 млрд. км. А теперь представьте, что диаметр всей галактики Млечный путь, частью которой является Солнце с окружающими его планетами, равен 1 квинтиллиону километров. Это число в 18 нулями.  А само скопление разных небесных тел содержит, по разным подсчетам, от 2*1011 до 4*1011 звезд, большинство из которых превосходят по размерам наше небесное светило.

И ведь Млечный путь – не единственная галактика во всем космическом пространстве. На звездном небе Земли невооруженным глазом можно рассмотреть соседние звездные скопления: Андромеду, Большое и Малое Магеллановы облака. Расстояния до них измеряется в мегапарсеках — в миллионах световых лет. И каждая из них также простирается на немыслимые для человеческого разума расстояния.

Все скопления звезд группируются в крупномасштабные объединения – группы галактик. К примеру, Млечный путь и соседние формирования входят в Местную группу диаметром около 1 мегапарсека. Представьте, для того, чтобы лучу света пройти ее из одного конца в другой, понадобится 3,2 млн. лет.

Но и эта величина не является самой большой. Группы галактик, в свою очередь, объединены в сверхскопления или суперкластер. Эти крупномасштабные вселенские  структуры содержат сотни и тысячи галактических групп и миллионы звездных формирований. Так, в Суперкластере Девы, куда входит Млечный путь, расположено более 100 групп галактик. Протяженность этой структуры составляет более 200 млн. световых лет и эта лишь часть гигантского формирования Ланиакея.

Центр тяжести Ланиакеи – сверхскопление Великий аттрактор, притягивает к себе все остальные структуры этой части космического пространства. Его можно смело назвать центром Вселенной, с оговоркой, что это лишь сердцевина познанного нами космоса. Вся же Ланиакея имеет диаметр более 500 млн. световых лет. И, чтобы в окончательно осознали масштабы Вселенной, представьте, что это гигантское образование – всего лишь  та малая часть космоса, которую смог обозреть и представить человек.

Какой формы Вселенная?

Сегодня с помощью телескопа «Хаббл» мы можем увидеть более 100 миллиардов галактик, и в каждой из них, возможно, сотни миллиардов звезд. Но как все это возникло? Почему есть нечто, а не ничто? Это основной вопрос для многих религий. Кажется, что такую огромную Вселенную кто-то должен был создать, что нельзя все это получить из ничего. Я хочу рассказать, почему это не так, почему все эти галактики и звезды могут возникнуть просто благодаря законам физики.

В 1926 году Эдвин Хаббл узнал, что наша Галактика — не единственная во Вселенной. А спустя еще три года он понял, что другие галактики отдаляются от нас. После этого поразительного открытия сразу стало казаться, что мы в центре Вселенной

Однако наблюдения Хаббла говорят о другом: Вселенная расширяется — неважно, из какой галактики вы за этим наблюдаете

До 1929 года наука считала, что Вселенная статична и вечна. Но коль скоро теперь мы поняли, что она движется, то мы можем узнать, что было с ней в прошлом. У всех галактик единое начало: около 13,8 миллиарда лет назад все они были в одной точке, которую мы называем Большим взрывом. Но что станет с галактиками в будущем? Бесконечно ли расширение? Это вопрос, из-за которого я начал заниматься космологией и вообще пошел в физику.

Есть три варианта геометрии нашей Вселенной: она может быть закрытой, открытой или плоской. Имеется в виду не форма самой Вселенной, а то, как в ней выглядит плоскость, сравнимая с размером самой Вселенной. Например, если нарисовать сколь угодно большой треугольник в плоской Вселенной, то сумма его углов будет равна 180 градусам. В открытой Вселенной линии, по которым движется свет, изгибаются, поэтому сумма углов треугольника будет меньше 180 градусов. А в закрытой Вселенной сумма его углов, наоборот, будет больше 180 градусов.

Согласно теории относительности, закрытая Вселенная будет расширяться, а затем сжиматься обратно и в конце концов схлопнется, открытая Вселенная будет расширяться бесконечно, а плоская сначала будет расширяться, а затем очень постепенно замедлится и остановится. Если мы сможем определить, в какой Вселенной живем, то узнаем и наше будущее. Но как это сделать?

Как со временем изменился наш взгляд на то, что такое Вселенная?

Понимание человеком того, что такое Вселенная, как она работает и насколько она велика, менялось на протяжении веков.

В течение бесчисленных жизненных периодов у людей было мало, либо вообще не было, возможностей понять Вселенную. 

Наши далекие предки полагались на миф, чтобы объяснить происхождение всего. Поскольку наши предки сами их придумали, мифы отражают человеческие заботы, надежды, стремления или страхи, а не природу реальности. 

Однако несколько веков назад люди начали применять математику, письмо и новые принципы расследования для поиска знаний. 

Эти принципы со временем совершенствовались, как и научные инструменты и со временем появились намеки о природе Вселенной. 

Всего несколько сотен лет назад, когда люди начали систематически исследовать природу вещей, слова “ученый” даже не существовало (зато исследователей определенное время называли “натурфилософами»). 

С тех пор наши знания о Вселенной неоднократно росли. Лишь около века назад астрономы впервые начали наблюдать галактики за пределами нашей, и прошло всего полвека с тех пор, как люди впервые начали отправлять космические корабли в другие миры. 

В течение одной человеческой жизни:

  • космические зонды совершили полет к внешней границе Солнечной системы и прислали назад первые снимки четырех самых отдаленых планет и их бесчисленных спутников;
  •  марсоходы впервые проехали по поверхности Марса; 
  • люди построили постоянную орбитальную космическую станцию;
  • первые большие космические телескопы начали открывать нам удивительные виды далеких частей космоса. 
  • Только в начале XXI века астрономы обнаружили тысячи планет вокруг других звезд, впервые обнаружили гравитационные волны и создали первое изображение черной дыры.

С помощью телескопа «Горизонт событий» ученые получили изображение черной дыры в центре галактики M87. 

Благодаря постоянно развиваются технологиям и знаниям, а также большому воображению, люди продолжают открывать тайны космоса. 

Люди даже еще не исследовали все миры нашей собственной Солнечной системы. Словом, большая часть Вселенной, которую можно познать, остается неизвестной 

Вселенной почти 14 000 000 000 лет, нашей Солнечной системе 4,6 миллиарда лет, жизнь на Земле существует примерно 3,8 миллиарда лет, а люди существуют лишь несколько сотен тысяч лет. 

Иными словами, Вселенная существовала примерно в 56 000 раз дольше, чем существует наш вид. 

По этому показателю почти все, что когда-либо происходило, делалось еще до существования людей. 

Поэтому, конечно, у нас есть масса вопросов – в космическом смысле мы только попали сюда.  

Первые несколько десятилетий исследования собственной Солнечной системы – это только начало начал. 

Теория причинных множеств

Во всех современных теориях пространство и время непрерывны. Они образуют гладкую ткань, которая лежит в основе всей реальности. В таком непрерывном пространстве-времени две точки могут находиться как можно ближе друг к другу в пространстве, и два события могут произойти как можно ближе друг к другу во времени.

Но другой подход, называемый теорией причинных множеств, переосмысливает пространство-время как серию дискретных фрагментов, или «атомов» пространства-времени. Эта теория установила бы строгие ограничения на то, насколько близкими могут быть события в пространстве и времени, поскольку они не могут быть ближе, чем размер «атома».

Новая теория, возможно, сможет объединить ОТО и квантовую механику.

Например, когда вы смотрите на экран, читая эту статью, все кажется гладким и непрерывным. Но если бы вы посмотрели на этот экран через увеличительное стекло, то увидели бы пиксели, которые разделяют пространство и обнаружили бы, что невозможно приблизить два изображения на экране ближе, чем на один пиксель. Эта теория взволновала физика Бруно Бенто из Ливерпульского университета.

«Огромная часть философии причинно-следственных связей заключается в том, что течение времени является чем-то физическим, что его не следует приписывать какой-то возникающей иллюзии или чему-то, что происходит внутри нашего мозга, что заставляет нас думать, что время течет; это прохождение само по себе является проявлением физической теории», – пишут авторы научной работы.

Итак, в теории причинных множеств причинный набор будет расти по одному «атому» за раз и становиться все больше и больше». Подход с причинно-следственными связями аккуратно устраняет проблему сингулярности Большого взрыва, потому что в теории сингулярности не могут существовать. Материя не может сжаться до бесконечно малых точек – они могут стать не меньше размера атома пространства-времени.

Человеческому глазу не подвластен микромир. Е счастью, у нас есть инструменты, позволяющие увидеть атомы и электроны.

Но как в таком случае выглядит начало нашей Вселенной? Как полагает Ленту и его коллега Став Залель, аспирант Лондонского Имперского колледжа, теория причинных множеств может об этом многое рассказать. Их работа пока что не прошла экспертную оценку и опубликована на сервере препринтов arXiv.

В ней физики рассмотрели вопрос о том, «должно ли существовать начало Вселенной в подходе с причинно-следственными связями». В первоначальной формулировке причинный набор вырастает из ничего во Вселенную, которую мы видим сегодня. В новой работе Большого взрыва в качестве начала Вселенной не было, поскольку причинно-следственная связь была бы бесконечной в прошлом. Это означает, что в прошлом всегда было что-то еще.

Новая работа подразумевает, что Вселенная, возможно, не имела начала – она просто существовала всегда. То, что мы воспринимаем как Большой взрыв, возможно, было просто особым моментом в эволюции этого всегда существующего причинного набора, а не истинным началом.

А как насчет ненаблюдаемой Вселенной?

Если Вы заметили, все приведенные выше числа и факты относятся к наблюдаемой части Вселенной. Или той шарообразной части космоса, которую можно каким-то образом увидеть с Земли. Или обнаружить с помощью космических телескопов и зондов. Но как насчет частей Вселенной, которые мы не видим? Ведь некоторые из них могут находиться слишком далеко от нас, чтобы свет, излученный после Большого взрыва, успел достичь Земли!

Исследование, проведенное группой британских ученых, показало, что фактический размер Вселенной может быть как минимум в 250 раз больше того, что мы наблюдаем. Исследователи рассчитали, что замкнутая и конечная Вселенная будет содержать примерно от 250 до 400 объемов наблюдаемой нами ее части.

Другая гипотеза, озвученная такими учеными, как лауреат Нобелевской премии Роджер Пенроуз, заключается в том, что Большой взрыв был лишь одним из эпизодов космической эволюции, которая происходит с нашей Вселенной. И на самом деле могло быть несколько Больших взрывов, за которыми следовали так называемые Большие сжатия. То есть существуют периоды, когда Вселенная перестает расширяться и схлопывается, чтобы потом взорваться снова.

Почему желания исполняются

То есть получается, что наш разум первичен, он преобладает над материей. Это и есть квантовая реальность! А раз разум непосредственно влияет на объективную реальность, то все рассуждения эзотериков, парапсихологов и авторов тех самых кассовых фильмом верны – мы можем управлять своей реальностью! И имеем для этого научное обоснование.

То есть, если мы представляем какое-либо желаемое будущее событие, эта реальность уже существует как потенциальная возможность. Она находится в бесконечном квантовом поле, где нет понятий пространства и времени

А все, что нужно для ее появления – это внимание наблюдателя.

Вот из такого пространства вариантов мы и выбираем свою собственную реальность и те события, из которых состоит наша жизнь

Человеку свойственно зацикливаться на своих проблемах, фокусируя на них внимание, от чего они только усиливаются. При этом, как утверждает квантовая физика, все возможности существуют в один момент, необходимо лишь выбрать нужную

То есть – сместить фокус внимания. 

Человек как квантовый наблюдатель может кардинально изменить «материю» своей жизни

Помните – «где внимание, там и энергия»! Это основной закон не только с точки зрения физики, но и эзотерики. Это дает ключ к управлению своими состояниями, окружающей реальностью и событиями. 

Так, чтобы заставить исчезнуть что-то нежелательное, надо перестать это наблюдать и направлять туда энергию

Направляйте свое внимание на планы и возможности, и энергия отправится туда, материализуя эти возможности. Управляя своим вниманием, вы управляете своей жизнью! Эффект плацебо – не фантазия, а квантовая реальность

И самое время начать пользоваться этими знаниями.

Энергия пустого пространства

В пустом пространстве, в ничто. Звучит, конечно, глупо, но пустое пространство не такое уж и пустое. Вот так выглядит то, что происходит внутри протона: постоянно что-то бурлит, появляются и исчезают различные частицы:

Мы не «видим» их, потому что они возникают на очень непродолжительное время, но при этом они составляют основную часть массы протона. А раз так, то, возможно, они появляются в открытом пространстве и дают какую-то энергию. Может быть, вакуум тоже что-то весит?

Еще когда я учился в университете, было предположение, что энергия вакуума — это единица со 120 нулями, но этого просто не может быть: будь это так, Вселенная была бы другой и нас бы просто не существовало. Мы ждали какого-то математического чуда, которое бы позволило нам сократить это число; предполагали даже, что энергия пустого пространства равна нулю. А затем решили не полагаться на теоретиков: если у пустого пространства есть энергия, ее можно измерить. Но как?

Гравитация в большинстве случаев притягивает объекты друг к другу, но вакуум создает антитяготение. Чтобы рассчитать его, необходимо понять, расширяется ли наша Вселенная с ускорением или с замедлением. Первые попытки определить это сделал Эдвин Хаббл в 1929 году, но сейчас мы знаем, что его расчеты были неверны из-за того, что, в частности, не учитывали эволюцию галактик и связанные с ней изменения светимости. Так что нам нужны были какие-то другие объекты с известной яркостью.

Это изображение галактики, расположенной в 7 млн световых лет от нас. В левом нижнем углу виден яркий объект — можно предположить, что в кадр случайно попала звезда из нашей Галактики, но нет: это сверхновая, которая светится как сто миллиардов звезд. Потом она тускнеет, но в первый месяц она светится с яркостью, которая нам известна. Сверхновые появляются в Галактике примерно раз в сто лет. Можно выдать каждому студенту по галактике, и пусть постоянно смотрит на нее — за сто лет как раз напишет диссертацию. Но на самом деле галактик очень много: если соединить пальцы в кружок размером с пятирублевую монету и посмотреть через него на небо, в этом кружочке будут сотни галактик. А значит, в небе постоянно взрываются сверхновые, так что мы легко можем использовать их, чтобы рассчитывать расстояния до отдаленных галактик и скорости, с которыми эти расстояния увеличиваются. Эти расчеты были проведены в 1998 году, и результатом стал вот такой график:

Если бы темпы расширения Вселенной были одинаковыми, то в его нижней части была бы просто прямая линия. Астрономы ожидали, что все сверхновые будут либо на этой линии, либо ниже. Но большая часть таких звезд оказалась выше линии — это могло быть только в том случае, если бы темпы расширения Вселенной увеличивались.

А чтобы Вселенная расширялась, нужно как раз столько энергии, сколько нам не хватало, — те самые 70%. Тогда все сходится. В 2011 году Нобелевскую премию по физике получили ученые, обнаружившие, что

Вероятно, это как-то связано с самой природой пространства и времени и причинами возникновения Вселенной. Но теперь понятно, что ее будущее будет определяться не материей и даже не геометрией, а энергией пустого пространства.

Вселенная – пространство

В астрономии вселенная означает все, везде и всегда. Другими словами, все пространство, время и их содержание. Она включает в себя все галактики, черные дыры, звезды, планеты и Луны. Она также включает в себя все формы энергии и материи.

Стивен Хокинг (1942-2018) однажды сказал:

Профессор Хокинг был британским физиком — теоретиком, космологом, автором и руководителем исследований в Центре теоретической космологии Кембриджского университета.

В 2016 Году Проф. Хокинг предположил, что черные дыры могут быть порталами в другие вселенные. Возможно, черные дыры не являются «вечными тюрьмами», из которых ничто, захваченное их гравитацией, никогда не вырвется. Интересно, есть ли выход?

Вселенная «для чайников»

Но несмотря на то, что в школьной программе все не первый десяток лет остается неизменным, мир не стоит на месте. И как бы нас ни встраивали в систему, все больше и больше людей пробуждаются и начинают изучать окружающую реальность, заглядывать в суть явлений. Информации становится все больше. И задача – научиться ей правильно пользоваться и направлять себе во благо.

Гениальные творцы показывают нам, как устроено мироздание через фильмы, чтобы дать толчок к массовому пробуждению. Такие фильмы, как «Матрица», «Фонтан», «Секрет» и другие, рассказывают об устройстве Вселенной и ее энергетических законах. И несмотря на то, что фильмы поданы как художественные и для массового зрителя, суть в них очень правильная. 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector