Подкалиберные боеприпасы: снаряды и пули, принцип действия, описание и история

Внутреннее облучение

Когда уран выгорает до состояния частиц, он проникает в организм человека с питьевой водой и продуктами питания или вдыхается с воздухом. При этом вся его радиация и химическая токсичность высвобождаются. Последствия отравляющего действия различаются в зависимости от растворимости урана в воде, но радиационное воздействие происходит всегда. Пылинка диаметром 10 мкм будет излучать одну α-частицу каждые 2 ч, в общей сложности более 4000 в год. Альфа-частицы продолжают травмировать клетки человека, не давая возможности им восстановиться. Кроме того, U-238 распадается на торий-234, период полураспада которого составляет 24,1 дня, Th-234 распадается на протактиний-234, период полураспада которого составляет 1,17 дня. Pa-234 становится U-234 c 0,24 млн лет полураспада. Торий и протактиний испускают электроны бета-распада. Шесть месяцев спустя они достигнут радиоактивного равновесия с U-238 с той же дозой радиации. На данном этапе частицы обедненного урана излучают альфа-частицы, вдвое больше бета-частиц и гамма-лучи, сопровождающие процесс распада.

Поскольку α-частицы не проходят дальше 40 мкм, весь ущерб будет нанесен тканям в пределах этого расстояния. Годовая доза, полученная поврежденным участком только от α-частиц, составит 10 зивертов, что в 10 тыс. раз больше предельной дозы.

Добыча урана в мире

Файл:KarteUrangewinnung.png

10 стран, ответственных за 94 % мировой добычи урана

Согласно «Красной книге по урану», выпущенной ОЭСР, в 2005 добыто 41250 тонн урана (в 2003 — 35492 тонны). Согласно данным ОЭСР, в мире функционирует 440 реакторов коммерческого назначения, которые потребляют в год 67 тыс. тонн урана. Это означает, что его производство обеспечивает лишь 60 % объёма его потребления (остальное извлекается из старых ядерных боеголовок).

Добыча по странам в тоннах по содержанию U на 2005—2006 гг.

Страна 2005 год
Канада 11410
Австралия 9044
Казахстан 4020
Россия 3570
США 1249
Украина 920
Китай 920

Добыча в России

На месторождении в Читинской области (около города Краснокаменск) добывается около 93 % российского урана. Добычу осуществляет шахтным способом «Приаргунское производственное горно-химическое объединение» (ППГХО), входящее в состав корпорации «ТВЭЛ».

Остальные 7 % получают методом подземного выщелачивания ЗАО «Далур» (Курганская область) и ОАО «Хиагда» (Бурятия).

Полученные руды и урановый концентрат перерабатываются на Чепецком механическом заводе.

На территории России (в Якутии) находится Эльконское урановое месторождение — самое богатое из разведанных месторождений в России, на него приходится более половины разведанных запасов урана в стране — около 344 тыс. тонн и считающееся одними из крупнейших в мире. Оно разделено на 8 лицензионных участков, один из которых — зона «Южная», запасы урана которой оцениваются на уровне свыше 250 тыс. тонн.

Примечания и ссылки

  1. ↑ и
  2. Бу-Раби Ф. (1995), Оценка концентрации урана в некоторых пробах окружающей среды в Кувейте после войны в Персидском заливе 1991 г. , Прил. Рад. Изот. 46 (4), 217–220
  3. Беллис, Д., Р. Ма, Н. Брамол, МакЛеод, К. У., Н. Чепмен, К. Сатаке (2001), Загрязнение ураном в воздухе — Как было выявлено в результате элементного и изотопного анализа коры деревьев , Environ. Загрязнение. 114 (3), 383–387
  4. Fahselt, D., (1997), Вытекание урана из четырех макролишайников в результате промывки водой, Coenoses, 12 77–81
  5. Ди Лелла, Л.А., Фрати, Л., Лоппи, С., Протано, Г., Риккобоно, Ф. (2003), Лишайники как биомониторы урана и других микроэлементов в районе Косово, сильно обстрелянном обедненным ураном туров , атмос. О. 37, 5445–5449
  6. Гарти, Дж. (1992), Лишайники и тяжелые металлы в окружающей среде , в: JP Vernet (ed.), Heavy Metals in the Environment II, Elsevier Science Publishers, Amsterdam, pp. 55–131.
  7. Гарти, Дж. (2001), Биомониторинг тяжелых металлов в атмосфере с помощью личинок: теория и применение , Crit. Ред. Plant Sci. 20 (4), 309–371
  8. Кирхнер, Г., Дайллант, Б. (2002), Потенциал лишайников как долгосрочных биомониторов естественных и искусственных радионуклидов , Environ. Загрязнение. 120, 145–150
  9. Jeran, Z., Jaimoviĉ, R., Batiĉ, F., Mavsar, R. (2002), Lichens как интегрированные мониторы загрязнения воздуха, Total Environ. 120, 107–113.
  10. Джеран З., Бирн А.Р., Батинь Ф. (1995), Пересаженные эпифитные лишайники как биомониторы загрязнения воздуха естественными радионуклидами вокруг уранового рудника Жировски Врх , Словения, Лихенолог 27 (5), 375–385.
  11. Лоппи, С., Пиринтос, С.А., Де Доминичис, В. (1999), Вклад почвы в элементный состав эпифитных лишайников (Тоскана, центральная Италия) . О. Монит. Оценка, 58, 121–151
  12. Chiarenzelli, JR, Aspler, LB, Dunn, C., Cousens, B., Ozarko, D., Powis, K., (2001), Многоэлементный и редкоземельный состав лишайников, мхов и сосудистых растений для Central Barrenlands, Нунавут, Канада , Appl. Геохим. 16, 245–270.
  13. ↑ и
  14. , Le Monde Diplomatique ,
  15. ↑ и Анжелик Фера, Энфанс де Фаллуджа , Франция, 9 июня 2011 г.
  16. Томас Байетто , «  В Фаллудже« маленькие монстры »вызывают вопросы об американском оружии, использованном в 2004 году  », Le Monde ,10 июня 2011 г.
  17. (in) Мартин Чулов , «  Огромный рост врожденных дефектов в Фаллудже  » , The Guardian ,13 ноября 2009 г.
  18. (in)
  19. Пьер Галле и Раймон Пулен , Биофизика: радиобиология, радиопатология , Издательство Masson ,2000 г., 253  с. ( ISBN  978-2225856365 )
  20. (in)
  21. (in)
  22. (in)

Эволюция лома

Совершенствуя БОПСы, конструкторы уделяют внимание всему: пробуют разное оперение для стабильности полета, мастерят легко сбрасываемые поддоны, пробуют разные бронебойные колпачки. Но главный способ повысить бронепробитие – сделать ломик подлиннее, потоньше, да так, чтобы не сломался в полете

И тут есть нюанс. В танк с ручным заряжанием можно грузить почти любые снаряды, лишь бы в укладку влезали, да и та обычно располагается в кормовой нише, модернизировать ее несложно.

А вот автоматы заряжания танков довольно требовательны к размерам снарядов. Поэтому разработка нового БОПСа с качественно иными характеристиками, скажем для Т-72, – задача нетривиальная.

Уран в мире

Самые большие запасы урана находятся в Австралии. Затем идут Казахстан, Россия, Канада, ЮАР, Нигер и Бразилия.

Что касается производства электроэнергии с помощью атомных электростанций, то Канада, Казахстан и Австралия занимают лидирующие позиции. Эти три страны вместе производят более чем половину ядерной энергии в мире.

Смотрите таблицу с данными по производству и запасам урана каждой из перечисленных стран.

Страна Запасы урана (тысяч тонн / в год) Производство обогащённого урана (тонн / в год)
Австралия 1 661 7 743
Казахстан 629 7 994
Россия 487 3 239
Канада 468 10 485
Нигер 421 3 355
Бразилия 276 238

«Лекало» для НАТО

Этот БОПС был принят на вооружение еще в конце 90-х годов, но с производством как-то не заладилось. Вольфрамовый сердечник, бронепробитие – 650 миллиметров по прямой и около 320 под углом в 60 градусов.

Это позволяет при идеальном выстреле с двух километров пробить корпусную броню большинства танков модификаций 90-х и нулевых годов. Если подъехать поближе и целить в уязвимые места башни, удастся поразить и ее.

Но, например, «Абрамс» M1A2SEP «Лекалом» можно бить только в бортовую проекцию, зато хоть в корпус, хоть в башню и с любых углов.

В этом году Минобороны заказало для армии две тысячи таких БОПСов. Это на полбоекомплекта сотни танков. Лучше, чем «Манго», конечно, но все же недостаточно.

Изотопы

Природный уран состоит из смеси трёх изотопов: 238U — 99,2739 %, период полураспада T1/2 = 4,51×109 лет, 235U — 0,7024 % (T1/2 = 7,13×108 лет) и 234U — 0,0057 % (T1/2 = 2,48×105 лет). Последний изотоп является не первичным, а радиогенным, он входит в состав радиоактивного ряда 238U.

Радиоактивность природного урана обусловлена в основном изотопами 238U и 234U, в равновесии их удельные активности равны. Удельная активность изотопа 235U в природном уране в 21 раз меньше активности 238U.

Известно 11 искусственных радиоактивных изотопов с массовыми числами от 227 до 240. Наиболее долгоживущий из них — 233U (T1/2 = 1,62×105лет) получается при облучении тория нейтронами.

Изотопы урана 238U и 235U являются родоначальниками двух радиоактивных рядов.

Модификации

  • XM1-FSED — предназначен для тестовых испытаний. Выпущено 11 единиц.
  • M1 — базовая модель, обладающая боекомплектом в 55 выстрелов и нарезной пушкой калибра 105 мм.
  • M1IP – усиление лобового бронирования башни, электроспуск ЗПУ, модернизация трансмиссии и подвески.
  • M1A1 – боекомплект в 40 выстрелов, гладкоствольная пушка калибра 120 мм, усиление бронирования лба корпуса, коллективная система защиты от ОМП с кондиционером.
  • M1A1HA  — урановая броня первого поколения, усиление бронирования башни.
  • M1A1HC – урановая броня второго поколения, боекомплект в 42 артвыстрела, улучшение цифрового управления двигателя и некоторые другие изменения.
  • М1А1НА – урановая броня второго поколения, усиление бронирования лба башни.
  • М1А1D — улучшение цифровых компонентов, дигитальные распределительные щитки боевого отделения и шасси.
  • M1A1AIM – капитальные модернизация и ремонт.
  • M1A1AIM Block I – капитальные модернизация и ремонт. Тепловизионный прицел ЗПУ, тепловизионная камера второго поколения для основного прицела наводчика, интегрированная система для самодиагностики бортовых систем, терминал FBCB2-BFT.
  • M1A1AIM Block II /M1A1SA – урановая броня третьего поколения.
  • M1A1FEP – аналог M1A1AIM Block II для КМП США.
  • M1A1KVT – модификация M1A1, оснащенная комплексом для симуляции танков, произведенных в СССР.
  • M1A1M – для экспорта в Республику Ирак.
  • M1A1SA – для экспорта в Королевство Марокко.
  • M1A1 Block III – необитаемое боевое отделение с автоматической системой вооружения, новая компоновка внутренних объемов корпуса, новое радиоэлектронное оборудование и силовой агрегат. Экспериментальная версия.
  • M1 SRV – весовой имитатор башни лафетной компоновки. Экспериментальный прототип на шасси танка М1 для исследования новой компоновки агрегатов внутри танкового корпуса.
  • M1 TTB – бронекапсула, рассчитанная на трех членов экипажа в передней части танка, необитаемая башня, боекомплект из 44 унитарных снарядов, размещённый в двухрядный карусельный магазин с вертикальным расположением ячеек с автоматической системой заряжания, гладкоствольная пушка M256 калибра 120 мм. Экспериментальный прототип на шасси танка М1, прошедших доработку после испытаний машины M1 SRV.
  • M1 CATTB — 140-мм гладкоствольная танковая пушка с многодатчиковой системой обнаружения цели и автоматом заряжания, система гидропневматической подвески в балансире, усовершенствованный объединённый силовой блок на базе дизельного двигателя. Экспериментальный проект.
  • M1A2 — новый прицел наводчика с безопасным для глаз дальномером и со стабилизацией в двух плоскостях, тепловизионный прибор наблюдения для механика-водителя,  независимый тепловизионный панорамный прицел командира, боевая информационно-управляющая система IVIS, командирская башенка с 8 перископами. Усиленное бронирование башни с помощью наполнения урановой броней 2-го поколения лобовых деталей и увеличения их габарита. Боекомплект орудия рассчитан на 42 выстрела.
  • M1A2 SEP – вмонтированные в прицелы командира и наводчика тепловизионные камеры 2-го поколения, система управления войсками FBCB2. Лобовые детали башни наполнены урановой броней 3-го поколения, что увеличило стойкость  против кумулятивных средств поражения. Кондиционирование, цветные дисплеи.
  • M1A2 SEP V2 – прицелы с инфракрасными и электрооптическими прицелами, усовершенствованные цветные дисплеи для отображения тактической обстановки, силовая установка, подверженная доработке и средства связи, совместимые с информационно-боевыми сетями пехотных соединений и частей. Внедрены технологии, разработанные по программе «Боевые системы будущего».
  • M1A2S — модернизация M1A1 и M1A2 для Королевства Саудовская Аравия. Газотурбинный двигатель  LV-100-5, усиление бронирования фронтальной проекции башни и корпуса, динамическая защита ходовой части. Замена систем управления огнем и связи, 120 мм пушки М-256.
  • TUSK — тепловизионный прицел для турельной установки пулемёта М240 заряжающего, щитки для защиты командира и заряжающего при наблюдении из открытых люков, комплекс динамической защиты для повышения защиты боковых проекций от кумулятивных средств поражения, разнесённое бронирование днища, гарнитура для связи с пехотой, дополнительный пулемет М2 на установке (размещенный на маске орудия), дистанционно-управляемая установка, тепловизионный прицел командирской ЗПУ.
  • M1A3 – усовершенствование подвески опорных катков, легкая пушка 120-мм калибра, облегченная броня, повышение долговечности катков, дальнобойное высокоточное вооружение, коробка скоростей и усовершенствованный двигатель. Разрабатывается.

Нахождение в природе [ ]

См. также: Урановые минералы

Урановая руда

Уран является элементом с самым большим номером из встречающихся в больших количествах. Содержание в земной коре составляет 0,00027 % (вес.), концентрация в морской воде — 3,2 мкг/л (по другим данным, 3,3·10-7%). Количество урана в литосфере оценивается в 3 или 4·10−4%.

Основная масса урана находится в кислых породах с высоким содержанием кремния. Значительная масса урана сконцентрирована в осадочных породах, особенно богатых органикой. В больших количествах как примесь уран присутствует в ториевых и редкоземельных минералах (алланит (Ca,LREE,Th)2(Al,Fe+3)3[SiO4][Si2O7]OOH, монацит (La,Ce)PO4, циркон ZrSiO4, ксенотим YPO4 и др.). Важнейшими урановыми рудами являются настуран (урановая смолка, уранинит) и карнотит. Основными минералами-спутниками минералов урана являются молибденит MoS2, галенит PbS, кварц SiO2, кальцит CaCO3, гидромусковит и др.

Минерал Основной состав минерала Содержание урана, %
Уранинит UO2, UO3 + ThO2, CeO2 65-74
Карнотит K2(UO2)2(VO4)2·2H2O ~50
Казолит PbO2·UO3·SiO2·H2O ~40
Самарскит (Y, Er, Ce, U, Ca, Fe, Pb, Th)·(Nb, Ta, Ti, Sn)2O6 3,15-14
Браннерит (U, Ca, Fe, Y, Th)3Ti5O15 40
Тюямунит CaO·2UO3·V2O5·nH2O 50-60
Цейнерит Cu(UO2)2(AsO4)2·nH2O 50-53
Отенит Ca(UO2)2(PO4)2·nH2O ~50
Шрекингерит Ca3NaUO2(CO3)3SO4(OH)·9H2O 25
Уранофан CaO·UO2·2SiO2·6H2O ~57
Фергюсонит (Y, Ce)(Fe, U)(Nb, Ta)O4 0,2-8
Торбернит Cu(UO2)2(PO4)2·nH2O ~50
Коффинит U(SiO4)(OH)4 ~50

Основными формами нахождений урана в природе являются уранинит, настуран (урановая смолка) и урановые черни. Они отличаются только формами нахождения; имеется возрастная зависимость: уранинит присутствует преимущественно в древних (докембрийских) породах, настуран — вулканогенный и гидротермальный — преимущественно в палеозойских и более молодых высоко- и среднетемпературных образованиях; урановые черни — в основном в молодых — кайнозойских и моложе — образованиях преимущественно в низкотемпературных осадочных породах.

Месторождения

Основная статья: Уран по странам

См. также раздел добыча урана .

Количество урана в земной коре примерно в 1000 раз превосходит количество золота, в 30 раз — серебра, при этом данный показатель приблизительно равен аналогичному показателю у свинца и цинка. Немалая часть урана рассеяна в почвах, горных породах и морской воде. Только относительно небольшая часть концентрируется в месторождениях, где содержание данного элемента в сотни раз превышает его среднее содержание в земной коре. По оценке 2015 года разведанные мировые запасы урана в месторождениях составляют более 5,7 млн тонн.

Крупнейшие запасы урана, с учётом резервных месторождений, имеют: Австралия, Казахстан (первое место в мире по добыче), Россия. По оценке 2015 года, в месторождениях России содержится около 507 800 тонн запасов урана (9 % его мировых запасов); около 63 % их сосредоточено в Республике Саха (Якутия). Основными месторождениями урана в России являются: Стрельцовское, Октябрьское, Антей, Мало-Тулукуевское, Аргунское молибден-урановые в вулканитах (Забайкальский край), Далматовское урановое в песчаниках (Курганская область), Хиагдинское урановое в песчаниках (Республика Бурятия), Южное золото-урановое в метасоматитах и Северное урановое в метасоматитах (Республика Якутия). Кроме того, выявлено и оценено множество более мелких урановых месторождений и рудопроявлений.

Название месторождения Страна Запасы, т Оператор месторождения начало разработки
1 Северный Хорасан Казахстан 200 000 Казатомпром 2008
2 Мак-Артур-Ривер Австралия 160 000 Cameco 1999
3 Сигар-Лейк Канада 135 000 Cameco
4 Южное Эльконское Россия 112 600 Атомредметзолото
5 Инкай Казахстан 75 900 Казатомпром 2007
6 Стрельцовское Россия 50 000 Атомредметзолото
7 Зоовч Овоо Монголия 50 000 AREVA
8 Моинкум Казахстан 43 700 Казатомпром, AREVA
9 Мардай Монголия 22 000 Khan Resources, Атомредметзолото, Правительство Монголии
10 Ирколь Казахстан 18 900 Казатомпром, China Guangdong Nuclear Power Co 2009
11 Жёлтые Воды Украина 12 000 ВостГок 1959
12 Олимпик-Дэм Австралия 1988
13 Россинг Намибия 1976
13 Доминион ЮАР 2007
13 Рейнджер Австралия 1980

Уран и производство электричества

Символ урана в периодической таблице — U. Уран состоит в основном из двух изотопов — 235U и 238U. Уран на 99,7 % состоит из изотопа 238U и только оставшиеся 0,7 % — это изотоп 235U.

Именно изотоп 235U, который составляет столь малый процент урана, позволяет получить энергию посредством расщепления ядра атома. Для производства электричества концентрация изотопа 235U должна составлять 3–4 %. Поэтому химики обогащают уран.

Обогащение урана можно провести двумя способами: с помощью ультрацентрифугирования или газовой диффузии. Оба метода разделяют изотопы и в результате концентрация 235U повышается.

Ядерная энергия считается чистой, потому что она не выделяет парниковые газы и её отходы достаточно малы. Другим преимуществом этой энергии то, что её легко транспортировать и она не требует много места для хранения.

Обогащённый уран прессуют в таблетки размером 1х1 см. Энергоотдача такой таблетки очень высока: две таблетки способны обеспечить энергией семью из 4 человек на 1 месяц.

Таким образом, уран является отличной альтернативой нефти и углю: чтобы произвести столько же электроэнергии, сколько производит 1 килограмм урана, потребуется 10 тонн нефти и 20 тонн угля. Это помимо негативных эффектов, которые последние оказывают на окружающую среду. К тому же нефть и уголь требуют много места.

Снаряды с урановым сердечником

Всякий металл, включая и уран, имеет кристаллическую структуру, в узлах которой — положительные ионы.

Между ионами по замысловатым траекториям, разрешенным квантовой механикой, перемещаются электроны, несущие отрицательный заряд.

Равновесие системы и ее механическая прочность обусловлены магнитным притяжением ионов и электронов.

Соударение уранового снаряда с броней вызывает резкое торможение и возникновение сил, которые «вытряхивают» электроны из кристалла.

Тогда одноименно заряженные ионы отталкиваются и разлетаются во всех направлениях.

Фото 1. Сердечник снаряда калибра 30 мм из обедненного урана

Происходит взрыв, при которого выделяется энергия, численно равная энергии такого же количества тротила. Только выделяется она в 1 000 раз быстрее.

В этом и кроется причина фантастического по силе бронебойного эффекта.

Выделяющаяся энергия не является ядерной.

В конце Второй мировой войны Германия впервые применила урановые сердечники для оснащения бронебойных снарядов.

Никаких особенных бронебойных свойств тогда за такими снарядами не заметили. К чему же тогда потуги немецкой военной промышленности касательно применения урана?

Да все из-за бедности.

Еще с 30-х годов ХХ века в сердечники бронебойных снарядов и пуль стремились включать материалы, обладавшие высокой твердостью и плотностью.

Учитывалась и цена. Лучшим оказался карбид вольфрама с плотностью почти 17 г/см2 (у золота ненамного меньше) и твердостью, позволявшей крошить стекло в труху.

Собственных запасов вольфрама у Германии не было, а закупки из Португалии были прекращены в 1943 г. из-за нежелания местного правительства иметь дело с гитлеровским режимом.

Для его замены было задействовано 1 200 т необогащенного урана, оставшегося от прекращенных работ по созданию атомной бомбы.

Плотность урана еще выше, чем у вольфрама.

Фото 2. Снаряды с обедненным ураном для артиллерийского комплекса Mark 15 Phalanx CIWS на борту американского линкора USS Missouri (BB-63)

Если бы немецкие снаряды с урановыми сердечниками проявили себя известным образом, пробивая танки насквозь, итоги Второй мировой войны могли бы быть иными…

Почему этого не произошло, теперь известно доподлинно.

Свойством взрываться как уран обладают многие металлы.

Главное — разогнать их до «критической» скорости. Для урана это более 1 500 м/с.

Снаряды же немецких противотанковых пушек едва достигали скорости 1 200 м/с. Уран влиял лишь на их массу.

Тактико-технические характеристики

6.1 Размеры

  • Боевая масса, т: М1 – 55; М1А1 – 57,15; М1А2 – 62, 5
  • Длина, м: 7,92
  • Длина с пушкой, м: М1 – 9,77; М1А1, М1А2 – 9,83
  • Ширина, м: 3,66
  • Высота. м: 2,43
  • Эквивалентная толщина лба корпуса, мм: М1 – 550; М1А1, М1А2 — 650
  • Эквивалент по стойкости лобовой брони корпуса (БОПС), мм: М1 – 450; М1А1, М1А2 — 550
  • Эквивалент по стойкости лобовой брони корпуса (КС), мм: М1 – 550; М1А1, М1А2 – 650
  • Борта корпуса, мм: 20 (35 до МТО)
  • Корма корпуса, мм: 20
  • Эквивалентная толщина лба башни, мм: М1 – 700; М1А1 – 800; М1А2 – 900.
  • Эквивалент по стойкости лобовой брони башни (БОПС), мм: М1 – 380; М1А1 – 500; М1А2 – 700.
  • Эквивалент по стойкости лобовой брони башни (КС), мм: М1 – 500; М1А1 – 700; М1А2 — 900
  • Крыша, мм: 70
  • Клиренс, мм: 483…-432.

6.2 Бронирование

  • Тип брони: противоснарядная, катаная комбинированная и стальная
  • Активная защита: AN/VLQ-6 MCD (экспериментально, на единичных экземплярах М1А1)
  • Динамическая защита: ARAT (опционально).

6.3 Вооружение

  • Пушка: М1 – 105-мм М68А1; М1А1, М1А2 – 120 мм М256
  • Тип пушки: М1 – нарезная; М1А1, М1А2 — гладкоствольная
  • Длина ствола, калибров: 50.92 у M68; 44.2 у М256
  • Прицелы: основной прицел наводчика: комбинированый (всесуточный) перископический монокулярный со встроенным лазерным дальномером. Зенитный: перископический монокулярный Kollmorgen Model 938. Резервный: телескопический шарнирный Kollmorgen Model 939
  • Пулемёты: 1 × 12,7-мм M2 HB и 2 × 7,62-мм M240
  • Боекомплект, выстрелов / 12,7-мм / 7,62-мм патронов: М1 – 55/900/11400; М1А1, М1А2 – 40 (17 из них относятся к первой очереди)/900/11400.

6.4 Подвижность

  • Двигатель: ГТД Avco Lycoming AGT-1500 1500 л.с.
  • Мощность двигателя, л.с: 1500
  • Удельная мощность, л.с./т: М1 — 27,6 (22,6); М1А1 — 27,1 (22,3); М1А2 — 23,80
  • Максимальная скорость по шоссе, км/ч: М1, М1А1 — ~65; М1А2 — ~67
  • Запас хода по шоссе, км: М1, М1А1 – 440; М1А2 — 465
  • Тип подвески: индивидуальная торсионная
  • Удельное давление на грунт, кг/см²: М1 — 0,93; М1А1 — 0,95; М1А2 — 1,07
  • Преодолеваемый ров, м: 2,7
  • Преодолеваемая стенка, м: 1,2
  • Преодолеваемый брод, м: 1,2 (2,0 с ОПВТ).

6.5 Остальные параметры

  • Боевая масса, т: М1 — 54,4; М1А1 — 61,34; М1А2 — 62,14; M1A2SEP — 63,1
  • Компоновочная схема: классическая
  • Экипаж, чел.: 4.

Получение

Самая первая стадия уранового производства — концентрирование. Породу дробят и смешивают с водой. Тяжелые компоненты взвеси осаждаются быстрее. Если порода содержит первичные минералы урана, то они осаждаются быстро: это тяжелые минералы. Вторичные минералы урана легче, в этом случае раньше оседает тяжелая пустая порода. (Впрочем, далеко не всегда она действительно пустая; в ней могут быть многие полезные элементы, в том числе и уран).

Следующая стадия — выщелачивание концентратов, перевод урана в раствор. Применяют кислотное и щелочное выщелачивание. Первое — дешевле, поскольку для извлечения урана используют серную кислоту. Но если в исходном сырье, как, например, в урановой смолке, уран находится в четырехвалентном состоянии, то этот способ неприменим: четырехвалентный уран в серной кислоте практически не растворяется. В этом случае нужно либо прибегнуть к щелочному выщелачиванию, либо предварительно окислять уран до шестивалентного состояния.

Не применяют кислотное выщелачивание и в тех случаях, если урановый концентрат содержит доломит или магнезит, реагирующие с серной кислотой. В этих случаях пользуются едким натром (гидроксидом натрия).

Проблему выщелачивания урана из руд решает кислородная продувка. В нагретую до 150 °C смесь урановой руды с сульфидными минералами подают поток кислорода. При этом из сернистых минералов образуется серная кислота, которая и вымывает уран.

На следующем этапе из полученного раствора нужно избирательно выделить уран. Современные методы — экстракция и ионный обмен — позволяют решить эту проблему.

Раствор содержит не только уран, но и другие катионы. Некоторые из них в определенных условиях ведут себя так же, как уран: экстрагируются теми же органическими растворителями, оседают на тех же ионообменных смолах, выпадают в осадок при тех же условиях. Поэтому для селективного выделения урана приходится использовать многие окислительно-восстановительные реакции, чтобы на каждой стадии избавляться от того или иного нежелательного попутчика. На современных ионообменных смолах уран выделяется весьма селективно.

Методы ионного обмена и экстракции хороши ещё и тем, что позволяют достаточно полно извлекать уран из бедных растворов (содержание урана — десятые доли грамма на литр).

После этих операций уран переводят в твердое состояние — в один из оксидов или в тетрафторид UF4. Но этот уран ещё надо очистить от примесей с большим сечением захвата тепловых нейтронов — бора, кадмия, лития, редких земель. Их содержание в конечном продукте не должно превышать стотысячных и миллионных долей процента. Для удаления этих примесей технически чистое соединение урана растворяют в азотной кислоте. При этом образуется уранилнитрат UO2(NO3)2, который при экстракции трибутил-фосфатом и некоторыми другими веществами дополнительно очищается до нужных кондиций

Затем это вещество кристаллизуют (или осаждают пероксид UO4·2H2O) и начинают осторожно прокаливать. В результате этой операции образуется трехокись урана UO3, которую восстанавливают водородом до UO2.

На диоксид урана UO2 при температуре от 430 до 600 °C воздействуют сухим фтористым водородом для получения тетрафторида UF4. Из этого соединения восстанавливают металлический уран с помощью кальция или магния.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector