Где расположена земля в млечном пути?

Строение Млечного Пути

  • Ядро,
  • Перемычка,
  • Рукава,
  • Диск,
  • Корона.

Какую форму имеет Млечный Путь?

Напомним, что галактика относится к спиральному виду. Очевидно, что Млечный Путь имеет форму диска. В свою очередь, в его структуре расположены центр-ядро, галактические дуги и спиральные рукава.

Строение галактики

Галактика Млечный Путь насыщена большим количеством пыли. По этой причине наблюдается небольшое видимое излучение звёзд. Поэтому мы не можем рассмотреть и изучить все объекты, которые имеет в своём составе наша галактика.

На самом деле, астрономы решили данную проблему. Для этого разработали специальные радиотелескопы. Стоит сказать, что применение радиоволн частично позволило проникнуть за завесу пыли. Таким образом, учёные конкретизировали спиральные рукава.

Разумеется, новая техника расширила границы исследования космического пространства. Однако, строение и особенности Млечного пути остаются активно изучаемой темой.Получается форма Млечного Пути это диск, с огромным количеством звёзд, газа и пыли.

Рукава Млечного пути

Туманность NGC 5189

Планетарные туманности получили название потому, что первые из найденных объектов такого типа выглядели в телескоп правильными дисками, напоминающими диски планет. Более совершенная оптика, а главное, фотография, показала их сложную структуру, часто совсем не похожую на идеальный диск. Однако объединяет планетарные туманности в один класс вовсе не форма, а происхождение — все они представляют собой сброшенные оболочки звезд.

Одна из планетарных туманностей успешно замаскировалась совсем под другой тип астрономических объектов. NGC 5189, расположенную в южном созвездии Муха, при наблюдении в небольшой инструмент легко спутать со спиральной галактикой. Она напоминает букву S.

Сложная форма туманности может быть объяснена существованием звезды-компаньона у ее центральной звезды, доживающей свои дни в виде белого карлика. Гравитация второй звезды, вращающейся вокруг белого карлика, могла закрутить вещество в такие спирали. Однако этот гипотетический спутник пока не обнаружен.

Планеты галактики Млечный путь

Несмотря на постоянную смерть и рождение новых звезд в нашей галактике, их количество подсчитано: Млечный путь является домом примерно для 100 миллиардов звезд. Основываясь на новых исследованиях, ученые предполагают, что вокруг каждой звезды вращается, по крайней мере, одна планета или более. То есть всего в нашем уголке Вселенной имеется от 100 до 200 миллиардов планет.

Ученые, которые пришли к такому выводу, изучали звезды типа красные карлики спектрального класса М. Эти звезды меньше нашего Солнца. Они составляют 75 процентов из всех звезд Млечного пути

В частности, исследователи обратили внимание на звезду Kepler-32, которая приютила пять планет

Как астрономы открывают новые планеты?

Планеты, в отличие от звезд, трудно обнаружить, так как они не излучают свой собственный свет. Мы можем с уверенностью сказать, что вокруг звезды имеется планета, только тогда, когда она становится перед своей звездой и заслоняет ее свет.

Планеты звезды Kepler-32 ведут себя точно так же, как экзопланеты, вращающиеся вокруг других карликовых звезд M. Они расположены примерно на одном расстоянии и имеют похожие размеры. То есть система Kepler-32 является типичной системой для нашей галактики

Типы галактик и их характеристики

Многообразие звездных систем побудило ученых задуматься об объединении их по внешнему виду, а также закономерностям проходящих внутри процессов. В 1925 г. Эдвин Хаббл предложил классификацию скоплений по их морфологии и дал им определение. Этот список без изменений используется и сегодня. Созданы и более детальные систематизации.

Эллиптические галактики (e)

Имеют форму эллипса. Включают в себя красные и холодные космические тела-гиганты. По данным астрономов, доля эллиптических звездных систем составляет 20% от всего объема. Существуют карликовые и гигантские скопления.

Ближайшая к Земле галактика эллиптического типа, открытая в 1938 г. американским астрономом Харлоу Шеплом, находится в созвездии Скульптор. Она относится к карликовым сфероидальным системам и имеет отличительную особенность — высокое содержание металлических объектов (около 4% от общей массы). Такой показатель наблюдается в образованиях, расположенных на краю видимой Вселенной.

Галактика эллиптической формы. Credit: referatwork.ru.

Спиральные галактики (s)

Представляют собой своеобразный звездный блин, который вращается вокруг своей оси и содержит до 500 млрд объектов. В центральной зоне наблюдается овальное вздутие — бандаж. Спиральные образования имеют два диска и благодаря множеству закрученных спиралевидных ветвей считаются наиболее красивым и завораживающим зрелищем в космосе.

В 1912 г. ученые выяснили, что Туманность Андромеды движется по направлению к Солнцу с впечатляющей скоростью — 300 км/ч. По прогнозам исследователей, через 3 млрд лет Туманность Андромеды столкнется с Млечным путем. Это означает, что в результате взаимодействия Солнечная система будет выброшена в космическое пространство, но разрушения планет не произойдет.

Спиральная галактика NGC 3521. Credit: kentbiggs.com.

Неправильные галактики (Irr)

Не вписываются в структуру, созданную Хабблом, так как не могут быть описаны как образования эллиптической или спиральной формы. У них нет ядра, а движение звезд хаотично. Предположительно, раньше неправильные системы имели четкие границы, но под воздействием разных гравитационных сил деформировались.

Выделяют три подтипа галактик:

  1. Irr I — системы, чья структура угадывается, но недостаточно, чтобы их можно было отнести к одному из типов, выделенных Хабблом.
  1. Irr II — системы, пережившие столкновение в прошлом или переживающие гравитационное взаимодействие сейчас.
  2. Карликовые неправильные — галактики, которые характеризуются минимальной светимостью.

Примерами последних систем являются Большое и Малое Магеллановы облака (БМО и ММО), которые находятся в той области неба, которая относится к Южному полушарию (в России не наблюдаются). В диаметре они меньше Млечного пути в 30 раз и легче в 300 раз, удалены от галактики, в которой находится Земля, на 163 тыс. световых лет.

Карликовые неправильные БМО и ММО. Credit: cyberway.golos.io.

Современные исследования стали возможны после запуска телескопа «Хаббл». В 2006 г. стало известно, что период вращения БМО составляет 250 млн лет.

У неправильных галактик нет ядра. Credit: w-dog.ru.

С полярными кольцами

Галактики такой формы встречаются редко. Они имеют необычную форму (внешнее кольцо вращается непосредственно над полюсами) и внешне напоминают большой овал с перпендикулярно расположенным внутри малым овалом.

Поэтому существует предположение, что галактики образовались при слиянии двух систем. Изучение таких систем затруднено небольшим числом исследуемых объектов и их большой удаленностью.

Расстояние от Солнечной системы — 12 млн лет. Образование было открыто в 1826 г. английским ученым Джеймсом Данлопом, а в 1847 г. Джон Гершель составил подробное описание Центавры А. С помощью космического телескопа «Хаббл» и орбитальной установки «Обсерватория Эйнштейна» были обнаружены крупные квазары и нейтронные звезды.

Центавр А — галактика с полярными кольцами. Credit: pbs.twimg.com.

Пекулярные галактики

Характеризуются искаженной структурой, причина которой — столкновение с другой галактикой или воздействие материи после выбросов космического вещества. Из-за индивидуальных особенностей их нельзя отнести к классификации Хаббла.

Искаженная структура у пекулярных галактик. Credit: naked-science.ru.

Галактика на 90% состоит из темной материи

Среди интересных фактов о Галактике можно выделить то, что ее компоненты космическая пыль, газ, звезды, планеты, астероиды и другие объекты составляют только 10% от общего объема. Все остальное является гипотетической формой материи, которая не производит электромагнитное излучение и никак с ним не взаимодействует. Поэтому темную материю нельзя исследовать с помощью привычных методов. Однако, ее существование было доказано многочисленными наблюдениями за космическими структурами и их гравитационным поведением. Как и черные дыры, ученые могут изучать темную материю на основании ее влияния на окружающие объекты.

Магнитные частицы

Кроме наличия сверхмассивной всепоглощающей черной дыры, центр нашей галактики может похвастаться невероятной активностью: старые звезды умирают, а новые появляются на свет с завидным постоянством.

Не так давно ученые заметили кое-что еще в галактическом центре – поток высокоэнергичных частиц, которые простираются на расстояние 15 тысяч парсек через галактику. Это расстояние равно примерно половине диаметра Млечного пути.

Частицы невидимы невооруженным глазом, однако с помощью магнитного изображения можно заметить, что гейзеры из частиц занимают около двух третей видимой части неба:

Что же стоит за этим феноменом? Один миллион лет звезды появлялись и исчезали, питая никогда не останавливающийся поток, направленный к внешним рукавам галактики. Общий объем энергии гейзера в миллион раз превышает энергию сверхновой.

Частицы движутся с невероятной скоростью. На основе структуры потока частиц астрономы построили модель магнитного поля, которое господствует в нашей галактике.

Наша галактика в мифах и легедах

Для большинства из нас, живущих в двадцать первом веке, Галактика Млечный Путь является неуловимым зрелищем. Мы должны оставить наши хорошо освещенные дома и улицы и выйти за пределы наших городов и пригородов в менее населенную среду. Как только световое загрязнение утихнет к незначительному уровню, Млечный Путь можно легко заметить в ясные безлунные ночи.     

Млечный Путь особенно яркий в конце лета и в начале осени в Северном полушарии. Лучшие места для осмотра Млечного Пути находятся в наших национальных и государственных парках, где жилые и промышленные застройки сведены к минимуму.   

До появления электрического или даже газового освещения люди полагались на кратковременные костры, чтобы осветлить свои дома и дороги. Следовательно, их ночное небо, как правило, было гораздо темнее. Столкнувшись с бесчисленными звездными узорами и великолепными полосами рассеянного света Млечного Пути, люди всех культур придумывали мифы, чтобы понять все это.  

Некоторые из древнейших мифов, касающихся Млечного Пути, поддерживаются австралийскими коренными жителями через наскальный рисунок и усные пересказы. Считается, что это наследие насчитывает десятки тысяч лет, когда аборигены «мечтали» о космосе. Млечный Путь сыграл центральную роль арбитра Мировоздания. Приобретя форму большой змеи, галактика сочеталась с земной змеей и тем самым создали они всех существ на Земле.   

Древние греки рассматривали Млечный Путь как брызги молока, которое разлилось из груди богини Геры. В этой легенде Зевс тайно приложил своего сына Геракла к груди Геры, пока она спала, чтобы дать ему его бессмертную силу. Когда Гера проснулась и обнаружила Геракла, она оттолкнула его, заставив молоко распылиться в космосе.  

Китайцы рассматривали Млечный Путь как “серебряную реку”, которая была создана для того, чтобы разделить двух влюбленных. К востоку от Млечного Пути Чжи Ну, девушка-ткачиха, которую отождествляли с яркой звездой Вегой в созвездии Лиры. К западу от Млечного Пути – ее любимый Ниу Ланг, пастух, который был связан со звездой Альтаир в созвездии Орла. 

Их разлучила на противоположных сторонах Млечного Пути мать Чжи Ну, Царица Неба, после того, как услышала об их тайном браке и рождении двоих детей. Однако раз в год им разрешается воссоединяться. На седьмой день седьмого лунного месяца (который обычно совпадает с августом) они встречаются на мосту через Млечный Путь, который делают тысячи сорок.        

Для индейцев кечуа Андского Перу Млечный Путь рассматривался как небесная обитель всевозможных космических существ. Вдоль Млечного Пути размещены бесчисленные темные пятна, которые они идентифицировали с куропатками, ламами, лягушкой, змеей, лисой и другими животными. Ориентация кечуа на темные регионы, а не на сияющую полосу звездного света, кажется, является уникальной среди всех создателей мифов.   

Среди финнов, эстонцев и соседних североевропейских культур Млечный Путь рассматривается как «путь птиц» на ночном небе. Отметив, что птицы сезонно мигрируют по маршруту с севера на юг, они отождествили это с Млечным Путем. Недавние научные исследования показали, что на самом деле птицы этого региона используют Млечный Путь как руководство для своих ежегодных миграций.  

Сегодня мы рассматриваем Млечный Путь как нашу галактическую обитель, где на большой сцене разыгрываются рождения звезд и их смерти, и где различные планеты вращаются вокруг своих звезд. 

Интересные факты

Кроме Обитаемой зоны, в Млечном Пути имеется и Необитаемая. В ней изначально не было процессов, сделавших появление жизни на планетах возможным. Крупных звезд, остатки которых после взрывов стали «кирпичиками» для рождения углерода, кислорода, железа, кальция и других элементов, там взорвалось гораздо меньше. Потому содержание нужных для создания и поддержания жизни веществ здесь минимально.

Потенциально не подходят для жизни из-за смертельного излучения еще одни жители Млечного Пути — звезды О-типа. Это горячие гиганты, излучающие громадные дозы ультрафиолетовых волн, убивающие в радиусе нескольких десятков световых лет от себя не только все живое, но и планеты до того, как их формирование закончится. Излучаемая О-звездами энергия не только «сдирает материю» с небесных тел, но и вырывает их с орбит.

У нашей галактики немало интересных, а иногда и странных соседей:

Глизе-581 — красный карлик, расположенный в 20,4 световых годах от Земли. Credit: NASA.

  1. Глизе-710, звезда — оранжевый карлик, более массивная, чем Солнце (на 60%), находящаяся от Земли на расстоянии всего 60-65 световых лет и постоянно приближающаяся.
  2. Облако Оорта — так называют обволакивающую нас по периметру громадную зону, полную ледяных глыб и валунов, являющуюся источником попадающих в Солнечную систему комет, астероидов и других мелких небесных тел.
  3. Альфа Центавра — ближайшая к Земле звезда. Она находится на расстоянии всего 4 световых года и состоит из 3 вращающихся друг вокруг друга небесных тел.
  4. Коричневые карлики — холодные и темные, излучающие мало света и потому сложные для наблюдения. Ближайшие из них находятся на расстоянии 9-40 световых лет, и некоторые такие прохладные, что до них даже можно дотронуться рукой.
  5. Экзопланеты, заметить которые сложно — ведь они не излучают света. Ближайшая из них находится в 10 световых годах отсюда и вращается вокруг одной из звезд созвездия Эридана. По свойствам эта планета напоминает Юпитер — является газовым гигантом.

Экзопланеты, находящиеся в непосредственной близости от Солнечной системы, называются трансплутоновыми, а после 2006 г., когда Плутон официально перестал считаться планетой, транснептуновыми. Во второй половине активно шли поиски Планеты Икс.

Ученые предсказывали, что этот объект похож габаритами на Юпитер и имеет ретроградную (обратно направленную) орбиту. Из экзопланет за пределами нашей системой в обратном направлении движется Wasp-17b. Она открыта в 2009 г. и находится совсем близко — на расстоянии около 1000 световых лет.

А еще в Млечном Пути встречаются «бездомные» планеты, открытые в начале 2010-х гг. Они начали существование как другие подобные небесные тела, но по какой-то причине сместились с орбиты и больше не вращаются вокруг звезды-родителя, хаотично блуждая по галактике.

https://youtube.com/watch?v=bJO_axU1Ev8

Таинственный сигнал

В ходе работы, которая пока не прошла экспретную оценку и опубликована на сервере препринтов airxiv, астрономы сравнили новый сигнал со звездами малой массы; мертвыми звездами, излучающие электромагнитное излучение (пульсары); нейтронными звездами с сильными магнитными полями и с неуловимым классом объектов под названием радиопереходы Галактического центра (GCRT). Удивительно, но сигнал J173608.2-321635 не удовлетворяет характеристикам ни одного из выше описанных объектов, что делает его потенциально новым.

Как пишут авторы исследования, необычный источник демонстрировал постоянное излучение радиосигнала в течение нескольких недель, но затем быстро отключился в течение всего одного дня. Резкая перемена излучения радиосигнала особенно затрудняет его постоянное наблюдение для получения более подробной оценки.

Скорее всего новый радиосигнал свидетельствует о существовании совершенно незнакомых объектов в галактическом центре.

Интересно, что три источника подобных GCRT, обнаруженные до сих пор, имеют некоторое сходство с таинственным сигналом, но схема излучения ASKAP J173608.2-321635 отличается, а временная шкала радиовидимости также варьируется. В конечном итоге астрономы полагают, что источником нового радиосигнала может быть совершенно новый класс объектов, обнаруженных с помощью радиотелескопов. Однако, если это источник является GCRT, то бросает вызов всему, что ученые о них знают.

Структура Млечного Пути

Если внимательно рассмотреть структуру Млечного Пути, то мы увидим следующее:

  1. Галактический диск. Здесь сосредоточено большинство звезд Млечного Пути.

Сам диск разбит на следующие части:

  • Ядро это центр диска;
  • Дуги – области вокруг ядра, в том числе непосредственно области выше и ниже плоскости диска.
  • Спиральные рукава – это области, которые выступают наружу от центра. Наша Солнечная Система находится в одном из спиральных рукавов Млечного Пути.
  1. Шаровые скопления. Несколько сотен из них разбросаны выше и ниже плоскости диска.
  2. Гало. Это большая, тусклая область, которая окружает всю галактику. Гало состоит из газа большой температуры и, возможно, темной материи.

Радиус гало значительно больше размеров диска и по некоторым данным достигает нескольких сот тысяч световых лет. Центр симметрии гало Млечного Пути совпадает с центром галактического диска. Состоит гало в основном из очень старых, неярких звезд. Возраст сферической составляющей Галактики превышает 12 млрд лет. Центральная, наиболее плотная часть гало в пределах нескольких тысяч световых лет от центра Галактики называется балдж (в переводе с английского «утолщение»). Вращается гало в целом очень медленно.

По сравнению с гало диск вращается заметно быстрее. Он представляет собой как бы две сложенные краями тарелки. Диаметр диска Галактики около 30 кпк (100 000 световых лет). Толщина – около 1000 световых лет. Скорость вращения не одинакова на различных расстояниях от центра. Она быстро возрастает от нуля в  центре до 200-240 км/с на расстоянии 2 тыс. световых лет от него. Масса диска в 150 млрд раз больше массы Солнца (1,99*1030 кг). В диске концентрируются молодые звезды и звездные скопления. Среди них много ярких и горячих звезд. Газ в диске Галактики распределен неравномерно, образуя гигантские облака. Основным химическим элементом в нашей Галактике является водород. Примерно на 1/4 она состоит из гелия.

Одной из самых интересных областей Галактики считается ее центр, или ядро, расположенное в направлении созвездия Стрельца. Видимое излучение центральных областей Галактики полностью скрыто от нас мощными слоями поглощающей материи. Поэтому ее начали изучать только после создания приемников инфракрасного и радиоизлучения, которое поглощается в меньшей степени. Для центральных областей Галактики характерна сильная концентрация звезд: в каждом кубическом парсеке их многие тысячи. Ближе к центру отмечаются области ионизированного водорода и многочисленные источники инфракрасного излучения, свидетельствующие о происходящем там звездообразовании. В самом центре Галактики предполагается существование массивного компактного объекта – черной дыры массой около миллиона масс Солнца.

Одним из наиболее заметных образований являются спиральные ветви (или рукава). Они и дали название этому типу объектов – спиральные галактики. Вдоль рукавов в основном сосредоточены самые молодые звезды, многие рассеянные звездные скопления, а также цепочки плотных облаков межзвездного газа, в которых продолжают образовываться звезды. В отличие от гало, где какие-либо проявления звездной активности чрезвычайно редки, в ветвях продолжается бурная жизнь, связанная с непрерывным переходом вещества из межзвездного пространства в звезды и обратно. Спиральные рукава Млечного Пути в значительной мере скрыты от нас поглощающей материей. Подробное их исследование началось после появления радиотелескопов. Они позволили изучать структуру Галактики по наблюдениям радиоизлучения атомов межзвездного водорода, концентрирующегося вдоль длинных спиралей. По современным представлениям, спиральные рукава связаны с волнами сжатия, распространяющимися по диску галактики. Проходя через области сжатия, вещество диска уплотняется, а образование звезд из газа становится более интенсивным. Причины возникновения в дисках спиральных галактик такой своеобразной волновой структуры не вполне ясны. Над этой проблемой работают многие астрофизики.

Альфа Центавра

Альфа Центавра — ближайшая к нам звезда, точнее, система из трех звезд. Две из них похожи на Солнце и составляют тесную пару. Они обращаются вокруг общего центра масс за 80 земных лет. Третья, маленький красный карлик, очень далека от них. Именно она является ближайшей к нам звездой, за что получила свое имя Проксима (от лат. — «ближайшая»). Несмотря на близость, она не видна невооруженным глазом.

Вокруг одной из звезд главной пары обращается планета. Ее масса приблизительно равна массе Земли, однако она находится так близко к звезде, что «год» на ней длится всего 3,236 земного дня. Температура на поверхности планеты составляет 1200 °C. Это выше температуры расплавленной магмы, что исключает возможность жизни.

На рисунке выше показано представление художника об этой планете и ее звезде. Вторая звезда пары — слева внизу. Яркая звезда в правом верхнем углу — Солнце.

Расположение Солнечной системы

Наша звезда, как и остальные звезды Галактики, вращается вокруг этой черной дыры. Солнечной системе требуется около 240 миллионов лет, чтобы совершить один оборот вокруг центра галактики Млечный Путь. Астрономы называют этот интервал времени галактическим годом. Представьте — в прошлый раз, когда Солнце находилось в той области космоса, где находится сейчас, на всей поверхности нашей планеты доминировали динозавры. С момента своего образования Солнце сделало меньше двадцати оборотов вокруг центра  Галактики.

Солнечная система находится в рукаве Ориона. Это область пространства между двумя вышеупомянутыми великими рукавами нашей Галактики. Здесь, в этом уютном уголке Млечного Пути, мы и живем. От Солнечной системы до центра нашей Галактики примерно 27 000 световых лет.

Если провести аналогию с тем, как люди считают свои годы, получается что Солнце родилось около 18 лет назад. Можно также сказать, что Большой взрыв, в результате которого возникла Вселенная, даже не достиг почтенного возраста. Потому что ему на самом деле всего 61 галактический год. А не 14 миллиардов. Однако Вы возможно знаете, что этот показатель времени обычно не используется. Ведь тогда даже возраст человеческой цивилизации будет исчисляться галактическими минутами. Если не секундами.

Как увидеть другую галактику?

Человеческая интуиция подсказывает, что далекие астрономические объекты должны казаться на небе меньше, чем близлежащие объекты. Но интуиция, как правило, не лучший помощник при работе с незнакомыми масштабами и структурами далекой Вселенной. В нашей Солнечной системе только Солнце, Луна и случайные кометы имеют ярко выраженный размер, который можно разглядеть невооруженным глазом. Планеты же — это просто точки.

Эта закономерность продолжается по мере удаления от Земли. Ближайшее крупное скопление галактик — скопление Девы, содержащее около 1 500 галактик; оно настолько велико, что заполняет все созвездие, в честь которого названо. Скопление Девы является частью более крупного, Сверхскопления Девы, которое включает в себя наш Млечный Путь. Сверхскопление Девы, в свою очередь, является подмножеством еще большего сверхскопления под названием Ланиакея, одной из крупнейших структур в известной Вселенной.

Возьмем, к примеру, недавнюю комету NEOWISE, которую можно было наблюдать с Земли. Твердая часть кометы крошечная, не более 5 километров в ширину, как же мы ее увидели? Дело в том, что газ и пыль, которые «выкипели» из кометы и образовали ее общий след в окружающей среде — распространились в миллион раз дальше.

Пылевые и ионные хвосты кометы NEOWISE были легко видны с Земли, хотя сама комета была настолько маленькой, что даже космический телескоп Хаббл не смог ее увидеть

Цефеида RS Кормы

Эта звезда ритмично пульсирует, изменяя свой блеск за 41,4 дня почти на одну звездную величину. При пульсации меняется не только ее светимость, но и размер. График данного процесса выглядит идеально ровным, повторяясь от периода к периоду в точности. Такое свойство не является уникальным. Звезда принадлежит к цефеидам — известному классу переменных звезд (первая открытая представительница класса — дельта Цефея). Примечательна отражательная туманность, в которую закутана звезда. В ней тоже наблюдается интересный эффект светового эха. Звезда меняет блеск, за ней эти изменения повторяет и туманность, но с запозданием, поскольку даже свету с его максимальной в природе скоростью требуется время, чтобы добраться до краев туманности.

Периоды изменения блеска цефеид строго зависят от их светимости. Зная их, можно узнать светимость звезды и, оценив видимый блеск, вычислить расстояние до нее и других объектов. Световое эхо уточнило эти оценки. Теперь мы лучше знаем расстояния во всей Вселенной.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector