«гексоген, однозначно»: трагедия в магнитогорске обрастает фейками

История

Открытие

Гексоген был синтезирован в первый раз в 1899 году в немецком языке , Георга Фридриха Henning (патент N ö 104280), и был использован в медицине. Только в 1920 году Герц признал гексоген как взрывчатое вещество, ему удалось синтезировать его путем прямого нитрования гексамина, но выходы были низкими, а процесс был дорогим и непривлекательным для производства в больших масштабах. В 1925 году в Пикатинни Арсенал был разработан процесс производства гексогена с выходом 68%. В 1940 году Росс и Шисслер в Канаде сумели разработать процесс, который не требовал использования гексамина в качестве сырья. В то же время Бахман разработал способ получения гексамина из гексамина, но с лучшим выходом.
Продукты Бахмана были известны как гексоген типа B и содержали 8-12% примесей. Впоследствии Брокман разработал процесс прямого синтеза чистого гексогена, который стал гексогеном типа А.

Вторая мировая война

RDX использовался во время Второй мировой войны во многих соединениях.

Пример составов взрывчатых веществ, использованных во время Второй мировой войны с гексогеном
Фамилия Состав
Композиция А 88,3% гексогена и 11,7% невзрывчатого пластификатора
Композиция B Гексоген, тротил и воск
H-6 45% гексоген, 30% тротил, 20% алюминий и 5% воск
PTX-1 30% гексоген, 50% тетрил и 20% тротил
PTX-2 41-44% гексоген, 26-28% тэна и 28-33% тротила
ПВА-4 90% гексоген, 8% поливинилацетат и 2% дибутилфталат
СПЕЛЫЙ 85% гексоген и 15% «масло Gulf Crown E Oil»
Торпекс 42% гексоген, 40% тротил и 18% алюминия

Английские и канадские постановки

В Великобритании гексоген производился с 1933 года на заводе Royal Dockyard в Вулидже , более крупном заводе, построенном в RGPF Waltham Abbey в 1939 году. В 1939 году промышленный завод был построен на этом месте, ROF Bridgwater , далеко. из Лондона  ; Производство гексогена началось в Бриджуотере в 1941 году. Великобритания пыталась быть самодостаточной на ранних этапах войны, потому что в то время США все еще были нейтральной страной; Канада, член Британского Содружества , была назначена поставщиком боеприпасов и взрывчатых веществ, включая гексоген. В 1941 году в Квебеке , в небольшом муниципалитете Лак-а-ла-Торту на окраине Шавинигана , была основана компания Shawinigan Chemicals , первый завод по производству гексогена в Северной Америке .

Немного другой метод был найден и использован в Канаде, но все еще с использованием гексамина, возможно, в Университете Макгилла на химическом факультете. Урбански подробно описывает пять методов производства.

Соединенные Штаты и процесс Бахмана

В начале Второй мировой войны правительство США обратилось к Tennessee Eastman Company (TEC), в Kingsport в Теннесси, чтобы разработать непрерывный процесс производства гексогена. Соединенные Штаты незаметно начали поиски производства гексогена в больших количествах. Вернер Эммануэль Бахманн из Мичиганского университета разработал процесс, который требовал большого количества уксусного ангидрида вместо азотной кислоты в «старом британском процессе Вулвича». ВФевраль 1942 г., TEC построила завод Wexler Bend и начала производство гексогена в небольших количествах. Это привело к тому, что правительство США разрешило TEC спроектировать и построить Holston Ordnance Works (HOW) (с тех пор называвшееся Holston Army Ammunition Plant  ) вИюнь 1942 г.в Кингспорте , штат Теннесси. Было обнаружено, что процесс синтеза гексогена Бахмана богаче октогеном, чем британский. Позже это привело к строительству завода по технологии Бахмана в ROF Bridgewater в 1955 году, производящего столько же гексогена, сколько и октогена.

Процесс основан на nitrolysis из гексаметилентетрамина . Можно получить гексоген или октоген .

Характеристики

Производство

RDX — это нитрованное взрывчатое вещество, получаемое при реакции азотной кислоты с гексамином . Эта добавка дополнительно дает гексоген, динитрометан , нитрат аммония и воду. Поскольку реакция нитрования гексамина экзотермична, смесь следует охлаждать непрерывно:

10HNO 3 + (CH 2 ) 6 N 4 → (CH 2 -N-NO 2 ) 3 + 3CH 2 (ONO 2 ) 2 + NH 4 NO 3 + 3H 2 O.

Характеристики

Гексоген представляет собой гетероцикл , который начинает разлагаться при 170  ° C , плавится при 205,5  ° C и кипит при температуре 234  ° C .
Его структурная формула: гексагидро-1,3,5-тринитро-1,3,5-триазин.
Его максимальная теоретическая плотность составляет 1,82.
Это очень хрупкое в кристаллическом состоянии при температуре ниже -4  ° C .

Взрыв

RDX разлагается при 217  ° C, но ему не хватает кислорода для полного окисления при взрыве. Сгорание может быть завершено сразу после контакта с атмосферой. Реакция разложения гексогена выглядит следующим образом:

C 3 H 6 N 6 O 6 → 3CO + 3H 2 O + 3N 2 .

При взрыве скорость его детонации достигает 8750  м. с −1 для плотности 1,76.
При подрыве гексоген выделяет 908  л газа на 1  кг взрывчатого вещества. Его теплота взрыва тогда составляет 1300  кал / кг .
Для запуска детонации необходимо использовать детонатор, так как при комнатной температуре он очень стабилен. Он скорее горит, чем взрывается, и взрывается только с помощью детонатора.
RDX имеет чувствительность шок 5,5  Дж и чувствительность к трению 174  N .

Токсичность

Токсичность вещества изучается много лет. Гексоген вызывает судороги (судороги) у военнослужащих, принимающих его внутрь, и у рабочих, занимающихся боеприпасами, вдыхающих его пыль во время производства. По крайней мере, один смертельный случай был связан с токсичностью гексогена на заводе по производству боеприпасов в Европе.

Во время войны во Вьетнаме с декабря 1968 по декабрь 1969 года по меньшей мере 40 американских солдат были госпитализированы с отравлением составом C-4 (который на 91% состоит из гексогена). C-4 часто использовался солдатами в качестве топлива для разогрева пищи и еды. обычно смешивался тем же ножом, который использовался для разрезания C-4 на мелкие кусочки перед сжиганием. Солдаты подверглись воздействию C-4 либо из-за вдыхания паров, либо из-за проглатывания, что стало возможным из-за того, что многие мелкие частицы, прилипшие к ножу, попали в приготовленную пищу. Симптомный комплекс включал тошноту, рвоту, генерализованные судороги и длительную постиктальную спутанность сознания и амнезию; что указывало на токсическую энцефалопатию .

Оральная токсичность RDX зависит от его физической формы; у крыс LD50 составила 100 мг / кг для тонкоизмельченного гексогена и 300 мг / кг для грубого гранулированного гексогена. Сообщалось о случае госпитализации ребенка-человека с эпилептическим статусом после приема гексогена в дозе 84,82 мг / кг (или 1,23 г для веса тела пациента 14,5 кг) в форме «пластического взрывчатого вещества».

Вещество обладает токсичностью от низкой до умеренной с возможной классификацией канцерогенов для человека . Однако дальнейшие исследования продолжаются, и эта классификация может быть пересмотрена Агентством по охране окружающей среды США (EPA). Восстановление источников воды, загрязненных гексогеном, оказалось успешным. Известно, что он является токсином почек для человека и очень токсичен для дождевых червей и растений, поэтому на армейских испытательных полигонах, где активно использовался гексоген, может потребоваться очистка окружающей среды. В исследовании, опубликованном в конце 2017 года, были высказаны опасения, что этот вопрос не был должным образом решен официальными лицами США.

Chemicals-el.ru

В 1936 г. Кноффлером был разработан метод производства гексогена, названный методом «К». Принципиальная схема технологического процесса получения гексогена по этому методу изображена на рис. 7 (см. приложение).

Уротропин нитруется раствором аммонийной селитры в концентрированной азотной кислоте. Нитрование осуществляется в две стадии. В первой стадии к раствору аммонийной селитры в азотной кислоте при температуре 20° добавляют уротропин. При этом образуется гексоген и формальдегид. Последний во второй стадии при температуре 65–70°С взаимодействует с аммонийной селитрой и азотной кислотой, образуя добавочное количество гексогена. Далее массу охлаждают.

Полученный гексоген отделяют от отработанной кислоты на барабанном фильтре, промывают водой и кристаллизуют из ацетона. В случае необходимости гексоген подвергают флегматизации.

Отработанная кислота содержит некоторое количество формальдегида, вследствие чего является нестойкой и не может быть подвергнута переработке. Поэтому вначале отработанную кислоту нагревают в специальных аппаратах при 90–95°С. При этом происходит полное окисление формальдегида и частичное разложение аммонийной селитры. Выделяющиеся при этом окислы азота и пары азотной кислоты поступают на абсорбционную установку. Стабилизированную азотную кислоту, содержащую около 48% HNO3 и 24% NH4NO3, подвергают дистилляции в специальных вакуум-аппаратах.

Основным преимуществом метода «К» является хороший выход гексогена (по формальдегиду 60% от теоретического). Серьезными недостатками метода являются: большое количество перерабатываемых материалов (на тонну гексогена перерабатывается свыше 14 т продуктов, что приводит к резкому снижению производительности аппаратуры и усложняет процесс) и весьма сложный процесс регенерации азотной кислоты и аммонийной селитры.

На одну тонну гексогена расходуется: уротропина 0,48–0,5 т, аммонийной селитры 4,8 т; азотной кислоты 8,6 т. Регенерируется аммонийной селитры 3,6 т, азотной кислоты 7,2 т .

Скорость химической реакции Вокруг нас постоянно происходят тысячи химических реакций. Горит костер и горит газ в конфорке газовой плиты, ржавеет железо, молоко превращается в творог, на фотопленке возникают изображени … Ученые обнаружили молекулу, которая уменьшает последствия сердечных приступов Ученые обнаружили молекулу, которая уменьшает последствия сердечных приступов, активируя защитный механизм, предохраняющий ткани сердца от повреждений при недостатке в них кислорода, говорится в стать …

Инновационный путь развития технологии создания новых лекарственных средств После распада СССР и государственного экономического кризиса 1998 года химико-фармацевтическая промышленность пришла в упадок. На данный момент объем продаж импортных готовых лекарственных с …

Гексоген (RDX)

Гексоген (RDX)

(CH2)3N3(NO2)3 — циклотриметилентринитроамин

Одно из самых сильных и высокобризантных применяемых ВВ. Используется либо в сплавах, либо с флегматизирующими добавками. В чистом виде используется для снаряжения капсюлей-детонаторов, а также для борьбы тараканами (это не шутка, им пользуются работники заводов, на которых он производится). Плавится гексоген с разложением, при этом чувствительность его к механическим воздействиям сильно повышается, поэтому его не плавят, а прессуют. Представляет собой белое кристаллическое вещество, уд.в. 1,8, температура плавления 205 С с разложением.

Плохо прессуется, поэтому его флегматизируют в ацетоне. Без запаха, вкуса, сильный яд (классно тараканов травить). Перекристаллизовывают из уксусной кислоты. Не гигроскопичен, плохо растворим в спирте, воде, эфире, хорошо в ацетоне. Чувствительность к удару занимает среднее положение между тетрилом и ТЭНом. Скорость детонации 8360 м/сек, фугасность 470 мл, объем газообразных продуктов взрыва — 908 л/кг, температура вспышки 230C, теплота разложения — 1370 ккал/кг. Применяют для снаряжения снарядов малого калибра, кумулятивных зарядов, детонаторов, также используется в пластиковых взрывчатках, например: 88 г тонко измельченного гексогена и 122 г смазочного масла или 78 г гексогена и 22 г смолистого связующего из нитропроизводных ароматических углеводородов и нитроцеллюлозы.

Первый способ

Необходимые вещества: Динитрат уротропина, азотная кислота.

Из динитрата уротропина получается больший выход гексогена, чем из чистого уротропина, также на выход гексогена влияет концентрация азотной кислоты. На выход гексогена также влияют окислы азота, которые вызывают окисление -(выгорание) уротропина. Гексоген образовавшийся при нитролизе динитрата уротропина будет почти полностью растворен в отработанной к-те. С целью его выделения полученный р-р необходимо разбавить до концентрации кислоты не более 60% при которой растворимость гексогена весьма ничтожно

Очень важно не допускать повышения температуры. Для получения гексогена берут динитрат уротропина и конц

азотную кислоту или меланж,состоящий из азотной кислоты + серной кислоты + воды.

Второй способ

Необходимые вещества: уксусная кислота (конц.), аммиачная селитра (нитрат аммония), уротропин (сухое горючее, гексаметилентетрамин), азотная кислота, уксусный ангидрид.

Проведение этой реакции не требует применения больших количеств уротропина и азотной кислоты. Вначале приготавливают р-ры уротропина в ледяной уксусной к-те и нитрата аммония в азотной кислоте. Нагреть растворы, одновременно нагревают и уксусный ангидрид. Приготовленные р-ры сливают в уксусный ангидрид. Слив компонентов производят при 70-75 С. По окончании слива смесь выдерживают 15-20 мин при той же температуре, а затем в нитромассу приливают воду. Промывают. Фильтруют. Сушат, обычно, в вакуум-сушилках при 60 С

Третий способ

Необходимые вещества: уротропин (сухое горючее, гексаметилентетрамин), азотная кислота (конц.), сода (бикарбонат натрия).

Берутся две кастрюли, ставятся одна внутрь другой. Во внешнюю наливается вода с температурой 20 — 30 градусов, а во внутреннюю наливается 120 мл. азотной кислоты. В азотную кислоту медленно добавляется 70 грамм измельченного Уротропина. Уротропин добавляется по половине чайной ложки за раз, в течении этой процесса необходимо постоянно поддерживать температуру во внешней кастрюле на уровне 20 — 30 С. Когда весь Уротропин растворится в азотной кислоте, необходимо повысить температуру во внешней кастрюле до 50 С и поддерживать ее в течении 10 минут. После этого внутреннюю кастрюлю ставят в другую кастрюлю с ледяной водой, и охлаждают до температуры 20 С. Потом в смесь добавляют 750 мл холодной воды, после этого появится белая соль. Смесь фильтруется (нам нужна соль). Потом с солью смешивается чайная ложка соды (для нейтрализации кислоты). Смесь оставляется на 2-3 минуты, затем смесь снова промывается и сушится. Гексоген можно очистить перекристаллизацией из ацетона.

Публикувано от: Ради Георгиев

США

В начале 1940-х годов крупнейшие производители взрывных устройств США, E. I. Pont de Nemours & Company и Hercules, имели многолетний опыт производства тринитротолуола (TNT) и не хотели экспериментировать с новыми взрывчатыми веществами. Армия США использовала ту же точку зрения и хотела продолжить использование TNT. RDX был проверен Пикатинским Арсеналом в 1929 году, и он считался слишком дорогим и слишком чувствительным. ВМС предложили продолжить использование пикрата аммония. Напротив, Национальный исследовательский комитет обороны (НКРР), посетивший Королевский арсенал, Вулвич, считал, что нужны новые взрывчатые вещества. Джеймс Б. Конант, председатель Отдела B, пожелал продолжить научные исследования в этой области. Таким образом, Конант создал экспериментальную лабораторию исследований взрывчатых веществ в Бюро шахт, Брюссель, штат Пенсильвания, с использованием средств Управления научно-исследовательскими и опытно-конструкторскими работами (OSRD). Применение гексогена было в основном военным.

В 1941 году британская миссия Tizard посетила отделы армии и флота США, а часть предоставленной информации включила детали метода Woolwich по производству RDX (гексогена) и его стабилизации, смешав его с пчелиным воском. Великобритания просила, чтобы США и Канада в совокупности поставляли 220 тонн (440 000 фунтов) RDX в день. Решение было принято Уильямом П. П. Блэнди, начальником Бюро боеприпасов, и было решено принять RDX для использования в шахтах и ​​торпедах. Учитывая непосредственную потребность в RDX, боевое подразделение США по просьбе Блэнди построило завод, который тут же скопировал оборудование и процесс, используемый в Woolwich. Результатом этого послужили работы по охране боеприпасов Вабаша под управлением E. I. du Pont de Nemours & Company. В то время в этих работах был задействован самый крупный завод по производству азотной кислоты в мире. Процесс Woolwich был дорогим; для каждого фунта RDX понадобилось 11 фунтов (5,0 кг) сильной азотной кислоты.

Открытие

Гексоген был создан в 1898 году Георгом Фридрихом Хеннинг, который получил немецкий патент (патент № 104280) для его изготовления путем нитролиза гексамина (гексаметилентетрамина) с концентрированной азотной кислотой. В этом патенте упоминались медицинские свойства вещества; однако еще три немецких патента, полученные Хеннингом в 1916 году, описывали гексоген как вещество, пригодное для использования в бездымных пропеллентах. Немецкие военные начали исследование его использования в 1920 году, ссылаясь на него как на гексоген. Результаты исследований и разработок не были опубликованы до тех пор, пока Эдмунд фон Герц, описанный как австрийский, а затем и немецкий гражданин, не получил британский патент в 1921 году и патент Соединенных Штатов в 1922 году. Обе заявки на патент были рассмотрены в Австрии. Британские заявки на патент включали производство взрывчатого вещества гексогена (RDX) путем нитрования, его использование с или без других взрывчатых веществ, в качестве взрывного заряда и в качестве детонатора. Заявка на патент США предназначалась для использования полого взрывного устройства, содержащего RDX, и крышки детонатора, содержащей RDX. В 1930-х годах Германия разработала усовершенствованные методы производства гексогена.

A-IX-2 или как Ледин решил нерешаемую задачу

Не взрывчаткой ТГА поразил специалистов инженер Ледин, она была его разминкой. К 1941 году он решил проблему, над которой до этого 30 лет безуспешно бились химики всех стран и к тому времени стали эту проблему считать неразрешимой в принципе. Вот в чем дело.

Уже к началу века черный порох в артиллерийских снарядах стали заменять более сильными взрывчатыми веществами. Идеальным взрывчатым веществом для этих целей стал тринитротолуол (ТНТ, тол). Он безопасен в обращении, надежен, легко заливается в корпуса снарядов. Он идеален практически для всех видов снарядов… кроме бронебойных.

При падении снаряда на землю, при ударе его о не очень твердые препятствия тринитротолуол выдерживает сотрясение и взрывается только тогда, когда его подорвет детонатор взрывателя. Но бронебойный снаряд летит с очень высокой скоростью, и его удар о броню очень резкий. Тринитротолуол не выдерживает удара и взрывается немедленно. Снаряд разрушается на броне и броню пробить не может.

Для того чтобы тринитротолуол преждевременно не взрывался, в него вводят флегматизаторы — вещества, делающие взрывчатку более устойчивой к удару. Но при этом падает мощность взрыва чуть ли не до мощности черного пороха. Химики брали более мощные взрывчатые вещества, но они практически все еще более нежные и уже не выдерживают не только удара о броню, но даже толчка при выстреле — взрываются прямо в стволе пушки. Таким взрывчатым веществам, чтобы они преждевременно не взрывались, нужно вводить флегматизаторы в увеличенных объемах, после чего мощность их взрыва становится, как у тринитротолуола — овчинка выделки не стоит. С начала века по начало Второй мировой войны химики перепробовали все и пришли к выводу, что эту задачу решить невозможно.

Так вот, в 1938 году Ледин взялся изобрести взрывчатое вещество для бронебойных снарядов, которое бы было в два раза мощнее тринитротолуола! Когда он разработал техзадание на это вещество, то все ученые, профессоры и прочие специалисты просто сочли его безграмотным дураком. Но поскольку Ледин был вольнонаемным при военной лаборатории, то начальство не возражало, чтобы он «побаловался» над решением нерешаемой задачи.

В это время случилась неприятность — Ледина призвали в армию. Специалисты в лаборатории были очень нужны, и начальство предложило присвоить ему офицерское звание и включить в штат лаборатории. Ему бы предоставили квартиру, высокий оклад, пайки и т.д. и т.п. Но в этом случае Ледин уже не смог бы заниматься своей взрывчаткой и вынужден был бы работать по плану лаборатории. И Ледин отказывается становиться офицером. Его призывают на службу матросом, но, правда, лаборатория добивается, чтобы он служил при ней. Теперь у Ледина не хватает денег снимать квартиру, содержать семью. Он отправляет ребенка к матери, они с женой ночуют по углам у друзей, меняя эти углы каждую ночь. Но Ледин упорно работает над своим изобретением и к началу войны создает взрывчатку, которая выдерживает удар снаряда о броню, но мощнее тринитротолуола более чем в 2 раза!

Уже по этой причине Ледин — выдающийся советский инженер и ученый! Но и это не все…

Снаряды, снаряженные взрывчаткой Ледина (он назвал ее A-IX-2), стали обладать такой высокой температурой взрыва, что поджигали внутри танка все, что могло гореть. Из-за этого они одно время назывались еще и зажигательными. А зенитные снаряды, снаряженные этой взрывчаткой, резко увеличили эффективность: был случай, когда одним удачно посланным 130-мм снарядом было сбито сразу звено из 3-х немецких бомбардировщиков. Если же стрельба велась ночью, то вспышки взрывов были настолько яркими, что немецкие летчики слепли и уже не видели ни земли, ни приборов, ни соседних самолетов. Но и это все еще не все.

Когда немцы добыли эти наши бронебойные снаряды, снаряженные взрывчаткой Ледина, то немецкая химия попыталась ее воспроизвести. Захваченный после войны отчет немецкого института Chemisch-Technische Reichanstalt Institut начинается с приказа Гитлера открыть секрет взрывчатки Ледина. В отчете описывается огромная работа немецких химиков по разгадке секрета этой взрывчатки. Из чего она создана, они, разумеется, немедленно поняли. Но как Ледин ее создал, они до конца войны понять не смогли. Эстафету у немцев приняли химики НАТО, США, Европы и всего мира. Бесполезно!

СССР сумел сохранить тайну, и 50 лет бронебойные снаряды, боевые части ракет были у Советской Армии самыми мощными в мире!

Инженер Ледин опередил своих коллег во всем мире на 50 лет, а если бы СССР не уничтожили и тайну взрывчатки не продали Западу, то, возможно, эта цифра удвоилась бы.

Что такое гексоген?

Гексоге#769;н — мощное вторичное взрывчатое вещество. (циклотриметилентринитрамин, RDX, T4) (CH2)3N3(NO2)3

белый кристаллический порошок. Без запаха, вкуса, сильный яд. Удельный вес 1,8 г/см3, молярная масса 222,13. Нерастворим в воде, плохо растворим в спирте, эфире, бензоле, толуоле, хлороформе, лучше в ацетоне, концентрированной азотной и уксусной кислотах. Разлагается серной кислотой, едкими щелочами, а также при нагревании.

Гексоген получил сво название по внешнему виду его структурной химической формулы. Впервые его синтезировал в 1890-х годах немецкий химик и инженер, сотрудник прусского военного ведомства Ленце.

Высокие взрывчатые параметры, простота и наджность в обращении, а также относительно широкое распространение гексогена вызывают постоянный к нему интерес со стороны участников вооружнных конфликтов, а также террористических организаций. Получение гексогена в кустарных условиях затруднительно, поэтому нелегальное распространение гексогена связано как с тайными операциями государственных структур промышленно развитых государств, так и с деятельностью различных криминальных кругов, в том числе и международных.

Гексоген по химическому составу близок к известному лекарству уротропину, использующемуся для лечения инфекций мочевыводящих путей. Поэтому вначале гексогеном заинтересовались преимущественно фармацевты. В 1899 году Ганс Геннинг (Hans Henning) взял патент на один из способов его производства, надеясь, что гексоген окажется ещ лучшим лекарством, чем уротропин. Однако, в аптеки гексоген не попал, так как вовремя выяснилось, что он сильнейший яд.

Лишь в 1920 году Герц показал, что гексоген представляет собой сильнейшее взрывчатое вещество, далеко превосходящее тротил. По скорости детонации он опережал все остальные известные тогда взрывчатки, а определение его бризантной способности обычным методом было невозможно, потому что гексоген разбивал стандартный свинцовый столбик.

Герц взял на свой относительно простой способ получения гексогена английский патент, и немедленно в Англии, а затем и в других странах начались усиленные исследования нового вещества и развернулось строительство заводов. В годы второй мировой войны гексоген уступал по масштабам производства только тротилу, а в наше время входит в состав многих боевых и промышленных взрывчатых веществ.

История

Гексоген получил своё название по внешнему виду его структурной химической формулы. Впервые его синтезировал в 1890-х годах немецкий химик и инженер, сотрудник прусского военного ведомства Ленце.

Гексоген по химическому составу близок к известному лекарству уротропину, использующемуся для лечения инфекций мочевыводящих путей. Поэтому вначале гексогеном заинтересовались преимущественно фармацевты. В 1899 году Ганс Геннинг (Hans Henning) взял патент на один из способов его производства, надеясь, что гексоген окажется ещё лучшим лекарством, чем уротропин. Однако, в аптеки гексоген не попал, так как вовремя выяснилось, что он представляет собой сильныйК:Википедия:Статьи без источников (тип: не указан)[источник не указан 1674 дня

] яд.

Лишь в 1920 году Герц показал, что гексоген является сильнейшим взрывчатым веществом, далеко превосходящим тротил. По скорости детонации он опережал все остальные известные тогда взрывчатки, а определение его бризантной способности обычным методом было невозможно, потому что гексоген разбивал стандартный свинцовый столбик.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector