Атомная электростанция, ее устройство, принцип работы

Типы ядерных реакторов

То, как работает АЭС, зависит от того, как именно работает ее атомный реактор. Сегодня есть два основных типа реакторов, которые классифицируются по спектру нейронов: Реактор на медленных нейтронах, его также называют тепловым.

Для его работы используется 235й уран, который проходит стадии обогащения, создания урановых таблеток и т.д. Сегодня реакторов на медленных нейтронах подавляющее большинство. Реактор на быстрых нейтронах.

За этими реакторами будущее, т.к. работают они на уране-238, которого в природе пруд пруди и обогащать этот элемент не нужно. Минус таких реакторов только в очень больших затратах на проектирование, строительство и запуск. Сегодня реакторы на быстрых нейтронах работают только в России.

Теплоносителем в реакторах на быстрых нейтронах выступает ртуть, газ, натрий или свинец.

Реакторы на медленных нейтронах, которыми сегодня пользуются все АЭС мира, тоже бывают нескольких типов.

Организация МАГАТЭ (международное агентство по атомной энергетике) создало свою классификацию, которой пользуются в мировой атомной энергетике чаще всего. Так как принцип работы атомной станции во многом зависит от выбора теплоносителя и замедлителя, МАГАТЭ базировали свою классификацию на этих различиях.

  1. PWR (pressurized water reactors) — водо-водяной реактор (реактор с водой под давлением). В странах СНГ такие реакторы называют аббревиатурой ВВЭР. В качестве теплоносителя и замедлителя в них используется обычная вода. Водо-водяные реакторы самые распространенные в мире (около 62% от всех реакторов). Водо-водяные реакторы дешевы и удобны, т.к. вода не воспламеняется, не затвердевает, и ее использование относительно безопасно.
  2. BWR (boiling water reactor) — кипящий реактор или кипящий водо-водяной реактор. Принцип действия АЭС на таком реакторе очень похож на то, как работает АЭС на ВВЭР. Кипящий реактор также использует обычную воду, его особенность в только том, что пар генерируется сразу в активной зоне. В водо-водяном реакторе сначала нагревается вода, которая позже, спустя несколько этапов, переводится в пар, в кипящих реакторах тепло сразу отдается кипящей воде, которая мгновенно становится горячим паром.Кипящие реакторы достаточно распространены, их 20% от всех атомных реакторов мира.
  3. LWGR (light water graphite reactor) — графито-водный реактор, ГВР, ВРГ или уран-графитовый реактор. В качестве замедлителя в таком типе реактора используется графит, в качестве теплоносителя – обычная вода. Схема работы АЭС, запущенной впервые в мире, основывалась на графито-водном реакторе. Сегодня такие реакторы используют редко, большинство из них расположены в России.
  4. PHWR (pressurised heavy water reactor) — тяжеловодный реактор. В таких реакторах в качестве теплоносителя и замедлителя используется тяжелая вода (D2O), по-другому ее называют тяжеловодородной водой или оксидом дейтерия.

С химической точки зрения оксид дейтерия идеальный замедлитель и теплоноситель, т.к. ее атомы наиболее эффективно взаимодействуют с нейтронами урана по сравнению с другими веществами. Попросту говоря, свою задачу тяжелая вода выполняет с минимальными потерями и максимальным результатом. Однако ее производство стоит денег, в то время как обычную «легкую» и привычную для нас воду использовать куда проще.

История «мирного атома» в СССР и России

XX век навсегда останется в истории точкой отсчёта покорения «атома». Незадолго до его начала английские физики Джозеф Томсон и Эрнест Резерфорд использовали радиоактивные частицы при изучении процесса ионизации. Первая ядерная реакция была осуществлена Резерфордом во время бомбардировки атомов азота α-частицами в 1919 году.

Тремя годами позже в Петрограде под руководством академика Вернадского начал работу Радиевый институт. Учреждение объединило в себе все организации города, работающие в области радиологии. В плане практической деятельности институт осуществлял научное руководство радиевым рудником и заводом посёлка Бондюга в Татарстане.

На базе учебного заведения в 1933 году проводится Всесоюзная научная конференция, посвящённая проблемам ядерной физики. 1939 год ознаменовался открытием возможности урановой ядерной реакции, в разработке которой приняли участие выдающиеся советские учёные того времени. Через год Президиумом Академии Наук СССР утверждается программа научных исследований.

Вторая мировая война, осуществление управляемой ядерной реакции Э. Ферми в Чикаго, бомбардировка атомными бомбами японских городов Хиросима и Нагасаки и последующие события внесли жёсткие коррективы в работу учёных-ядерщиков. Во главе работ по урану ставят профессора И. В. Курчатова. Создаётся профильная лаборатория, затем институт, который существует и поныне. Чрезвычайная упорная работа приносит результаты:

  • 1944 год – первые килограммы чистого урана на территории Европы и Азии;
  • 1946 год – запущен первый в Евразии реактор;
  • 29 августа 1949 года на полигоне под Семипалатинском испытана первая в СССР атомная бомба;
  • 1953 год – водородная бомба;
  • 26 июня 1954 года первая в мире атомная электростанция (реактор «Атом мирный») в городе Обнинске, СССР, дала электрический ток.

Помимо чисто военных целей (бомбы, ракеты, подводные лодки), ядерная энергия начинает использоваться в народном хозяйстве и научных исследованиях. Кроме электростанции, в 60-ых годах прошлого века был запущен в работу исследовательский реактор на быстрых нейтронах, появился первый атомный ледокол – «Ленин».

Атомная энергетика России

Строительство атомных электростанций в нашей стране принимает широкие масштабы. 1958 год. Запущена первая очередь Сибирской АЭС (атомная электрическая станция), начато сооружение промышленной Белоярской атомной электростанции. В сентябре 1964 года вступает в строй первый энергоагрегат Нововоронежской АЭС. 1973 год – Ленинградская атомная станция.

Так продолжается вплоть до 1986 года, когда катастрофа планетарного масштаба на Чернобыльской электростанции вынудила пересмотреть доктрину ядерной энергетической безопасности. На территории СССР появилось 11 недостроенных атомных объектов. 

После распада Советского Союза в атомной отрасли произошёл целый ряд структурных изменений. Одно ведомство сменяло другое. В 1992 году путём преобразований было создано профильное министерство. Огромные экономические трудности привели к стагнации ядерной индустрии страны. Лишь благодаря высокой потребности в энергоресурсах и активной позиции специалистов атомные мощности и ресурсный человеческий потенциал в значительной степени удалось сохранить. В конце 1991 года в работе оставались 28 энергоблоков производительностью 20 242 МВт.

Для справки: общая мощность электростанций страны составляла на начало 1992 года 211 755 МВт. С 2000 года открывается новый этап атомной энергетики России.

Традиционные типы электростанций

Классификация комплексов по добыче энергии производится по самым разным признакам. Определяющим фактором выступают источники электроэнергии и принцип работы.

Различают следующие виды электростанций.

  • Атомные – система базируется на реакции деления и синтеза. Последние существуют только в проекте.
  • Газовые – используют природное топливо. Разделяются на электростанции, работающие на газе из месторождений и на рудничном, болотном газе.
  • Жидкотопливные – дизельные или бензиновые. Такие станции носят локальный характер.
  • Твердотопливные – угольные и торфяные.
  • Гидроэлектростанции – используют работу водяного потока в самых разных вариантах. Сегодня существуют комплексы, использующие силу прилива и отлива, эксплуатирующие морские течения, русловые и прочие варианты.

Выделяют станции нетрадиционные: ветровые, гелиостанции.

Тепловые

Водяной пар является теплоносителем. В нагретом состоянии он сам становится источником энергии. По сути, это усовершенствованная паровая машина.

Различают ТЭЦ и ТЭС. ТЭС рассчитана на получение только электроэнергии. ТЭЦ, помимо генерирования тока, подает горячую воду. Принцип работы обоих комплексов почти одинаков.

В топку подают одновременно топливо и разогретый воздух в качестве окислителя. Чаще всего для теплоэлектростанций берут уголь. Однако торфяные могут работать и на брикетах. Топливо измельчено до состояния пыли, чтобы обеспечить максимально полное сгорание. Тепло от сгорания нагревает воду, превращая ее в пар. Последняя подается на паровую турбину. Водяной пар заставляет вращаться ротор генератора и преобразует энергию тепла в электричество.

Пар попадает к конденсатору, где вновь превращается в воду. Насосом воду перекачивают в реактивные нагреватели, затем в деаэратор. Здесь вода освобождается от газов, поскольку они провоцируют коррозию оборудования и вновь подается в котел.

Плюсы и минусы ТЭС

Простота конструкции
Дешевое топливо
Небольшая площадь
Низкая стоимость электроэнергии

Загрязнение атмосферы продуктами сгорания угля
Дорогое обслуживание
Невысокая производительность

Атомные

Опыты по использованию атомной энергии при работе генераторов проводились с 1948 года. Первая в мире АЭС была построена в СССР под руководством академика Курчатова.

Так же как тепловые, атомные делят на АЭС – вырабатывающие только электроэнергию, и АТЭЦ – подающие горячую воду. Схема работы не слишком отличается от тепловой станции, так как в конечном итоге двигающей силой здесь выступает пар. Но источником нагрева является ядерный реактор.

В результате протекания ядерной реакции в реакторе выделяется тепло. Оно передается теплоносителю первого контура. Жидкость уходит на теплообменник – парогенератор, где нагревает до кипения теплоноситель во втором контуре. Отсюда пар подается на турбину, при вращении которой и вырабатывается электрический ток. Затем пар охлаждается, в конденсаторе дегазируется и подается вновь во второй контур. Оба контуры замкнуты.

Плюсы и минусы АЭС

Независимость от источников топлива из-за небольшого объема материала, необходимого для работы
Отсутствуют вредные выбросы
Высокая производительность
Обеспечение электроэнергией крупных регионов

Нужен большой объем воды для охлаждения конденсаторов
Тяжелые и опасные последствия аварии

Сложность представляет и утилизация отработанного ядерного топлива.

Гидроэлектростанции

Такой комплекс использует в качестве движущей силы естественные природные явления: приливы и отливы, течение рек, силу падающего потока и прочее. Топливо для работы станций не нужно, что делает стоимость полученного таким образом электричества минимальной.

Создают или находят водяной поток нужной мощности – водопад, морское течение. Чаще перепад давлений создают искусственно, сооружая плотину. Сдерживаемая перед плотиной вода при выпуске вырывается с большим напором и приводит в действие лопасти гидротурбин. Они и превращают энергию движения воды в электричество.

Плюсы и минусы ГЭС

Стоимость тока в 2 раза ниже, чем на ТЭС
Турбины могут работать на любой мощности
Набирает мощность от 30 секунд до 2 минут
Течение реки — возобновляемый ресурс
Крупные станции сильно удалены от пользователей
Постройка плотины и эксплуатация ГЭС нормализуют климат

Высокая стоимость строительства
Вредное влияние на водохозяйственные объекты
Необходимость затопления больших территорий при стройке

Виды топлива используемого на Атомных электростанциях

На атомных электростанциях возможно использование несколько веществ, благодаря которым можно выработать атомную электроэнергию, современное топливо АЭС – это уран, торий и плутоний.

Ториевое топливо сегодня не применяется в атомных электростанциях, для этого есть ряд причин.

Во-первых, его сложнее преобразовать в тепловыделяющие элементы, сокращенно ТВЭлы.

ТВЭлы — это металлические трубки, которые помещаются внутрь ядерного реактора. Внутри

ТВЭлов находятся радиоактивные вещества. Эти трубки являются хранилищами ядерного топлива.

Во-вторых, использование ториевого топлива предполагает его сложную и дорогую переработку уже после использования на АЭС.

Плутониевое топливо так же не применяют в атомной электроэнергетике, в виду того, что это вещество имеет очень сложный химический состав, система полноценного и безопасного применения еще не разработана.

Урановое топливо

Основное вещество, вырабатывающее энергию на ядерных станциях – это уран. На сегодняшний день уран добывается несколькими способами:

  • открытым способом в карьерах
  • закрытым в шахтах
  • подземным выщелачиванием, при помощи бурения шахт.

Подземное выщелачивание, при помощи бурения шахт происходит путем размещения раствора серной кислоты в подземных скважинах, раствор насыщается ураном и выкачивается обратно.

Самые крупные запасы урана в мире находятся в Австралии, Казахстане, России и Канаде.

Самые богатые месторождения в Канаде, Заире, Франции и Чехии. В этих странах из тонны руды получают до 22 килограмм уранового сырья.

В России из одной тонны руды получают чуть больше полутора килограмм урана. Места добычи урана нерадиоактивны.

В чистом виде это вещество мало опасно для человека, гораздо большую опасность представляет радиоактивный бесцветный газ радон, который образуется при естественном распаде урана.

Подготовка урана

В виде руды уран в АЭС не используют, руда не вступает в реакцию. Для использования урана на АЭС сырье перерабатывается в порошок – закись окись урана, а уже после оно становится урановым топливом.

Урановый порошок превращается в металлические «таблетки», — он прессуется в небольшие аккуратные колбочки, которые обжигаются в течение суток при температурах больше 1500 градусов по Цельсию.

Именно эти урановые таблетки и поступают в ядерные реакторы, где начинают взаимодействовать друг с другом и, в конечном счете, дают людям электроэнергию.

В одном ядерном реакторе одновременно работают около 10 миллионов урановых таблеток.

Перед размещением урановых таблеток в реакторе они помещаются в металлические трубки из циркониевых сплавов — ТВЭлы, трубки соединяются между собой в пучки и образуют ТВС – тепловыделяющие сборки.

Именно ТВС называются топливом АЭС.

Общая информация

Новости

16 Декабря 2021На стройплощадке Курской АЭС-2 смонтированы гидроемкости второй ступени системы пассивной защиты реактора
В реакторном здании энергоблока №1 Курской АЭС-2 специалисты установили на штатное место восемь гидроемкостей системы пассивного залива активной зоны.

10 Декабря 2021Курская АЭС стала победителем регионального этапа всероссийского конкурса «Российская организация высокой социальной эффективности»
Победой сразу в двух номинациях завершился для Курской АЭС региональный этап всероссийского конкурса «Российская организация высокой социальной эффективности».

Новости

1 — 2 из 675

Начало | Пред. |

1

|

След. |
Конец

КУРСКАЯ АЭС

Место расположения: вблизи г. Курчатов (Курская обл.)      

Тип реактора: РБМК-1000      

Количество энергоблоков: 4

Курская АЭС входит в первую четверку равных по мощности атомных станций страны и является важнейшим узлом Единой энергетической системы России. Основной потребитель – энергосистема «Центр», которая охватывает 19 областей Центрального федерального округа России.

Доля Курской АЭС в установленной мощности всех электростанций Черноземья составляет более 50%. Она обеспечивает электроэнергией большинство промышленных предприятий Курской области.

На атомной станции используются канальные реакторы кипящего типа с графитовым замедлителем и водяным теплоносителем. Такой реактор предназначен для выработки насыщенного пара под давлением 7,0 МПа.

Курская АЭС – станция одноконтурного типа: пар, подаваемый на турбины, образуется непосредственно в реакторе при кипении проходящего через него теплоносителя. В качестве теплоносителя используется обычная очищенная вода, циркулирующая по замкнутому контуру. Для охлаждения отработавшего пара в конденсаторах турбин используется вода пруда-охладителя. Площадь зеркала водоема – 21,5 км2.

Станция сооружена в две очереди: первая – энергоблоки № 1 и № 2, вторая – №3 и №4. Энергоблок №5 третьей очереди находится в стадии консервации.

Для сохранения и развития производства электрической и тепловой энергии, в соответствии с утвержденным в ноябре 2013 года Правительством РФ документом «Схема территориального планирования РФ в области энергетики» начато сооружение станции замещения – Курской АЭС-2 с новыми реакторами ВВЭР-ТОИ (водо-водяной энергетический реактор – типовой оптимизированный информатизированный поколения III+). Проект Курская АЭС-2 отвечает как требованиям РФ, так и всем современным международным требованиям в области безопасности ядерной энергетики.

29 апреля 2018 года с выполнения ключевого события «Начало бетонирования фундаментной плиты энергоблока №1» начат основной этап строительства Курской АЭС-2. Суммарная установленная мощность двух строящихся блоков АЭС ~ 2510 МВт. После окончания строительства и ввода в эксплуатацию каждый энергоблок Курской АЭС-2 будет работать в режиме нормальной эксплуатации с ежегодной выработкой электроэнергии и отпуском тепла потребителям в течение 60 лет.

В 2010–2011 гг. система экологического менеджмента Курской АЭС признана независимым аудитом соответствующей требованиям национального стандарта России и нормативному документу системы обязательной сертификации по экологическим требованиям. В 2020 году по итогам отраслевого ежегодного конкурса Курская АЭС наряду с Балаковской АЭС названа лучшей в области развития культуры безопасности.

Расстояние до города-спутника (г. Курчатов) – 4 км; до областного центра (г. Курск) – 40 км.

НОМЕР ЭНЕРГОБЛОКА ТИП РЕАКТОРА УСТАНОВЛЕННАЯ МОЩНОСТЬ, М ВТ ДАТА ПУСКА
1 РБМК-1000 1000 19.12.1976
2 РБМК-1000 1000 28.01.1979
3 РБМК-1000 1000 17.10.1983
4 РБМК-1000 1000 02.12.1985
Суммарная установленная мощность 4000 МВТ

Эксперименты с атомом в довоенное время

В 1930х-1940х многие мировые ученые проводили фундаментальные радиохимические исследования, которые в будущем дали толчок возникновению атомных проектов.

В конце 1938 года немецкие физики обнаружили тепловыделение от цепной реакции атомов урана. Уже тогда было понятно, что перед учеными вещество невероятной мощи и силы, реакции которого требуют внимательного изучения. Все физики мира переключились на изучение проблем деления атома. Сразу было установлено, что атомы урана-238 делятся очень плохо, гораздо охотнее это делают частицы урана-235. Уран решили обогащать и повышать содержание 235х изотопов. Был найден и другой путь – работать с ураном – 238, который при определенных реакциях можно превратить в плутоний. А плутоний использовать как сырье для ядерных реакций. Физики-ядерщики в СССР, США и Европе в довоенное время работали в двух направлениях:

  • Обогащение урана-235
  • Переработка урана-238

С середины 1939 года США, Германия и Англия засекретили свои исследования по получению чистого урана и делению его атомов от Советского Союза. Обстановка в мире накалялась, развитые страны стали работать над урановыми проектами независимо друг от друга. С началом Второй мировой исследования ядерных реакций прекратили. Они возобновились осенью 1942го.

Аварии с радиоактивными выбросами

Если уж мы заговорили об авариях на атомных станциях, давайте обсудим, как они классифицируются и какие их них были самыми крупными.

Для классификации аварий по их серьезности и силе воздействия на человека и природу они делятся на 7 степеней по Международной шкале ядерных событий, получая определенный уровень INES. На основании этого уровня можно судить был ли причинен вред людям и насколько было повреждено оборудование самой станции. Далеко не все уровни считаются опасными.

Например, инциденты на Чернобыльской АЭС (26 апреля 1986 года) и на АЭС Фукусима-1 (11 марта 2011 года) соответствовали максимальному седьмому уровню, а некоторые аварии, о которых даже почти никто не узнал, соответствовали четвертому уровню. Например, взрыв на Сибирском химическом комбинате (Россия, 1993 год), авария на ядерном объекте Токаймура (Япония, 1999 год) и авария в институте радиоэлементов во Флёрюсе (Бельгия, 2006 год).

Это Чок-Ривер.

Раз уж заговорили об авариях, стоит упомянуть и первую аварию с радиоактивным загрязнением. Оно произошло в Чок-Ривер лаборатории 12 декабря 1952 года.

Произошло оно вследствие ряда ошибок оператора и сбоев в системе аварийной остановки. Реактор в лаборатории вышел в надкритический режим работы. Цепная реакция сама себя поддерживала и выделение энергии в несколько раз превысило норму. В итоге активная зона была повреждена и радиоактивные продукты деления с большим периодом полураспада вместе с массой охлаждающей воды вылились в подвальное помещение. За год работы реактор был полностью восстановлен.

Как видим, аварии случаются и иногда их масштабы устрашают, но все равно по статистике работа АЭС гораздо безопаснее и несет меньше вреда, чем сжигание топлива. Разница экологичности уже достигает трех-четырехкратного уровня. На подходе термоядерные реакторы, которые должны сделать процесс еще более экологичным. Пока, по большому счету, проблема только в отработанном топливе. Его надо как-то деактивировать и захоранивать. Ученые работают над этим. Будем надеяться, что они решат эту проблему.

Общее описание и принцип работы

Принцип работы атомного реактора очень прост, однако сложна сама реализация проекта. Как и в любой электростанции, электроэнергию вырабатывает генератор. Вращение генератор приобретает за счет энергии пара, который образуется от выделения энергии тепловыделяющим веществом. В нашем случае парогенератором выступает реактор на обогащенном Уране.

Первый в мире атомный реактор работал на обогащённом Уране. В нем содержалось до 5% столь необходимого для реакции Урана-235. Сам реактор был небольшого размера, четыре с половиной метра в высоту и 3 метра в диаметре, и находился в стальном баке. Внутри он полностью был заполнен графитом, в котором были специальные круглые каналы, в которые помещались урановые элементы. Активная зона составляла всего полтора метра в диаметре и 1,7 метра высотой. Теплосъем в реакторе производился водой с давлением в доходящим до 100 атмосфер, благодаря чему она не закипала и при 300 градусах тепла, хотя температура редко превышала 280-290 градусов по цельсию

Несмотря на то, что всего рабочих каналов было 128, в него достаточно было загрузить половину элементов для нормальной работы. Один стержень весил 4,2 кг, а суточный расход составлял всего 30 грамм вещества. Вода подавалась на парогенератор, температура пара на выходе достигала 270 градусов и давление 13 атмосфер. КПД Обнинской АЭС составлял 19%. Мощность электростанции 5 МВт. Для сравнения самая мощная в России сейчас Балаковская АЭС имеет 4 реактора, каждый по 4000 МВт мощности.

Как устроен реактор

У всех реакторов примерна одна схема. Его «сердце» — активная зона. Ее можно условно сравнить с топкой обычной печки. Только вместо дров там находится ядерное топливо в виде тепловыделяющих элементов с замедлителем – ТВЭЛов. Активная зона находится внутри своеобразной капсулы — отражателе нейтронов. ТВЭЛы «омываются» теплоносителем – водой. Поскольку в «сердце» очень высокий уровень радиоактивности, его окружает надежная радиационная защита.

Операторы контролируют работу установки с помощью двух важнейших систем – регулирования цепной реакции и дистанционной системы управления. Если возникает нештатная ситуация, мгновенно срабатывает аварийная защита.

Преимущества и недостатки использования АЭС

Потребление электроэнергии во всем мире постоянно возрастает. При этом рост потребления увеличивается более ускоренными темпами, чем выработка энергии, а практическое применение современных перспективных технических решений в данной области по многим причинам начнется через несколько лет. Решением данной проблемы становится совершенствование ядерной энергетики и возведение новых атомных электростанций. Можно выделить следующие преимущества эксплуатации атомных электростанций:

  1. Высокая энергоемкость используемого топливного ресурса. При полноценном выгорании один килограмм урана выделяет количество энергии, сопоставимое с результатом сжигания около 50 тонн нефти, либо вдвое больше тонн каменного угля
  2. Способность вторичного применения ресурса после переработки. Расщепленный уран, в отличие от отходов органического топлива, может быть повторно использован для выработки энергии. Дальнейшее развитие атомных электростанций предполагает полноценный переход на замкнутый цикл, что поможет обеспечить отсутствие образования каких-либо вредных отходов
  3. Атомная станция не способствует образованию парникового эффекта. Каждый день атомные электростанции помогают избежать эмиссии около 600 миллионов тонн углекислого газа. Действующие на территории России АЭС каждый год задерживают поступление в окружающую среду более 200 миллионов тонн углекислого газа
  4. Абсолютная независимость от местонахождения источников топлива. Большая удаленность атомной электростанции от месторождения урана никак не влияет на возможность ее функционирования. Энергетический эквивалент ядерного ресурса во много раз больше, в сравнении с органическим топливом, и расходы на его транспортировку минимальны
  5. Невысокая стоимость использования. Для большого числа стран выработка электроэнергии при помощи АЭС не затратнее, чем на других типах электростанций

Несмотря на большое количество положительных сторон эксплуатации атомных электростанций, существует несколько проблем. Основной недостаток заключается в тяжких последствиях аварийных ситуаций, для предотвращения которых электростанции оснащаются довольно сложными системами безопасности с большими запасами и резервированием. Таким образом обеспечивается исключение повреждения центрального внутреннего механизма даже при масштабной аварии.

Большой проблемой для эксплуатации АЭС также является их уничтожение после выработки ресурсов. Стоимость их ликвидации может достигать 20% от всех затрат на их сооружение. Кроме того, по техническим соображениям для атомных электростанций является нежелательным функционирование в маневренных режимах.

Первые атомные электростанции в мире позволили сделать большой шаг в усовершенствовании ядерной энергетики. В современных условиях в России около 17% электроэнергии вырабатывается именно при помощи АЭС. По причине выгоды эксплуатации АЭС многие страны приступают к строительству новых реакторов и рассматривают их как перспективный источник электроэнергии.

Выбросы в атмосферу через трубу АЭС

  Наверное, самое большое число слухов и домыслов ходят вокруг выбросов атомных станций. Выбросы действительно есть и происходят они, в основном, через вентиляционные трубы — это те самые трубы, которые стоят возле каждого энергоблока и никогда не дымят. По большей части, в атмосферу попадают инертные радиоактивные газы — ксенон, криптон и аргон. Но перед сбросом в атмосферу воздух из помещений АЭС проходит систему сложных фильтров, где удаляется большая часть радионуклидов. Короткоживущие изотопы распадаются еще до того, как газы достигнут верха трубы, еще больше снижая радиоактивность. В итоге, вклад в естественный радиационный фон газоаэрозольных выбросов АЭС в атмосферу незначителен и им вообще можно пренебречь. Поэтому атомная энергия является одной из самых чистых, в сравнении с другими электростанциями. В любом случае, все радиоактивные выбросы атомных станций строго контролируются экологами и разрабатываются способы дальнейшего их снижения.

Атомные электростанции России

Балаковская АЭС

Расположена рядом с городом Балаково, Саратовской области, на левом берегу Саратовского водохранилища. Состоит из четырёх блоков ВВЭР-1000, введённых в эксплуатацию в 1985, 1987, 1988 и 1993 годах.

Балаковская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.

Ежегодно она вырабатывает более 30 миллиардов кВт•ч электроэнергии. В случае ввода в строй второй очереди, строительство которой было законсервировано в 1990-х, станция могла бы сравняться с самой мощной в Европе Запорожской АЭС.

Белоярская АЭС

Белоярская АЭС расположена в городе Заречный, в Свердловской области, вторая промышленная атомная станция в стране (после Сибирской).

На станции были сооружены четыре энергоблока: два с реакторами на тепловых нейтронах и два с реактором на быстрых нейтронах.

В настоящее время действующими энергоблоками являются 3-й и 4-й энергоблоки с реакторами БН-600 и БН-800 электрической мощностью 600 МВт и 880 МВт соответственно.

БН-600 сдан в эксплуатацию в апреле 1980 — первый в мире энергоблок промышленного масштаба с реактором на быстрых нейтронах.

БН-800 сдан в промышленную эксплуатацию в ноябре 2016 г. Он также является крупнейшим в мире энергоблоком с реактором на быстрых нейтронах.

Билибинская АЭС

Расположена рядом с городом Билибино Чукотского автономного округа. Состоит из четырёх блоков ЭГП-6 мощностью по 12 МВт, введённых в эксплуатацию в 1974 (два блока), 1975 и 1976 годах.

Вырабатывает электрическую и тепловую энергию.

Калининская АЭС

Калининская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.

Расположена на севере Тверской области, на южном берегу озера Удомля и около одноимённого города.

Состоит из четырёх энергоблоков, с реакторами типа ВВЭР-1000, электрической мощностью 1000 МВт, которые были введены в эксплуатацию в 1984, 1986, 2004 и 2011 годах.

4 июня 2006 года было подписано соглашение о строительстве четвёртого энергоблока, который ввели в строй в 2011 году.

Кольская АЭС

Кольская АЭС расположена рядом с городом Полярные Зори Мурманской области, на берегу озера Имандра.

Состоит из четырёх блоков ВВЭР-440, введённых в эксплуатацию в 1973, 1974, 1981 и 1984 годах.
Мощность станции — 1760 МВт.

Курская АЭС

Курская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.

Расположена рядом с городом Курчатов Курской области, на берегу реки Сейм.

Состоит из четырёх блоков РБМК-1000, введённых в эксплуатацию в 1976, 1979, 1983 и 1985 годах.

Мощность станции — 4000 МВт.

Ленинградская АЭС

Ленинградская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.

Расположена рядом с городом Сосновый Бор Ленинградской области, на побережье Финского залива.

Состоит из четырёх блоков РБМК-1000, введённых в эксплуатацию в 1973, 1975, 1979 и 1981 годах.

Мощность станции — 4 ГВт. В 2007 году выработка составила 24,635 млрд кВт•ч.

Нововоронежская АЭС

Расположена в Воронежской области рядом с городом Воронеж, на левом берегу реки Дон. Состоит из двух блоков ВВЭР.

На 85 % обеспечивает Воронежскую область электрической энергией, на 50 % обеспечивает город Нововоронеж теплом.

Мощность станции (без учёта Нововоронежской АЭС-2) — 1440 МВт.

Ростовская АЭС

Расположена в Ростовской области около города Волгодонск. Электрическая мощность первого энергоблока составляет 1000 МВт, в 2010 году подключен к сети второй энергоблок станции.

В 2001—2010 годах станция носила название «Волгодонская АЭС», с пуском второго энергоблока АЭС станция была официально переименована в Ростовскую АЭС.

В 2008 году АЭС произвела 8,12 млрд кВт-час электроэнергии. Коэффициент использования установленной мощности (КИУМ) составил 92,45 %. С момента пуска (2001) выработала свыше 60 млрд кВт-час электроэнергии.

Смоленская АЭС

Расположена рядом с городом Десногорск Смоленской области. Станция состоит из трёх энергоблоков, с реакторами типа РБМК-1000, которые введены в эксплуатацию в 1982, 1985 и 1990 годах.

В состав каждого энергоблока входят: один реактор тепловой мощностью 3200 МВт и два турбогенератора электрической мощностью по 500 МВт каждый.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector